作为像差相关度量的EUV DRAM接触孔方向测量

Woosung Jung, Jong-Hoi Cho, Sung-Soon Lim, Taeseop Lee, DaeYoung Choi, J. Seo, Seunghyun Lee, JunKyoung Lee, You Jin Kim, Jeong Ho Yeo, A. Brikker, Roi Meir, R. Alkoken, Kyeongju Han, Sujin Lim, K. Choi, Chanhee Kwak, Hyeon Sang Shin
{"title":"作为像差相关度量的EUV DRAM接触孔方向测量","authors":"Woosung Jung, Jong-Hoi Cho, Sung-Soon Lim, Taeseop Lee, DaeYoung Choi, J. Seo, Seunghyun Lee, JunKyoung Lee, You Jin Kim, Jeong Ho Yeo, A. Brikker, Roi Meir, R. Alkoken, Kyeongju Han, Sujin Lim, K. Choi, Chanhee Kwak, Hyeon Sang Shin","doi":"10.1117/12.2660118","DOIUrl":null,"url":null,"abstract":"With the extreme ultraviolet (EUV) lithography and its pitch scaling, the resist shrinkage from electron beam has returned to an important critical dimension (CD) control issue - unlike multi-patterning where the smallest CD is larger than 40nm. The resist height reduces to maintain the aspect ratio below 2:1 which is critical factor for the prevention of the resist collapse. This leads to huge challenges to minimize the shrinkage of resist during the scanning electron microscope (SEM) measurement. Accurate and precise metrology of chemically amplified resist (CAR) type EUV photoresist processed pattern utilizing classical beam energy for lithography pattern such as 500V is great challenging as electron beam exposure of 1st measurement already fully shrunk the pattern. Moreover, occurrence of carbonization along with shrinkage hinders finding best conditions for not only metrology optimization but also minimized process impact. In this work, we evaluated the magnitude of shrinkage of CAR type EUV photoresists with several approaches including 0th and 1st shrinkage estimation utilizing line & space pattern and contact hole pattern as a function of landing energy dose and static/dynamic repeatability method to distinguish behaviors of shrinkage and carbonization by controlling interaction time of photoresist to its environment. One approach to trace minimized 0th shrinkage and metrology uncertainty in lithography process is utilizing 1st shrinkage (1st CD – 2nd CD) analysis together with plotting absolute value of the 1st CD as a function of dose. The other approach to trace optimization condition was comparing exposed area with electron beam and non-exposed area achieved by comparing litho/etch consecutive process on the same area. Furthermore, model fits, a simulation study were also performed.","PeriodicalId":393709,"journal":{"name":"Metrology, Inspection, and Process Control XXXVII","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation measurement on EUV DRAM contact hole as an aberration correlated metric\",\"authors\":\"Woosung Jung, Jong-Hoi Cho, Sung-Soon Lim, Taeseop Lee, DaeYoung Choi, J. Seo, Seunghyun Lee, JunKyoung Lee, You Jin Kim, Jeong Ho Yeo, A. Brikker, Roi Meir, R. Alkoken, Kyeongju Han, Sujin Lim, K. Choi, Chanhee Kwak, Hyeon Sang Shin\",\"doi\":\"10.1117/12.2660118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the extreme ultraviolet (EUV) lithography and its pitch scaling, the resist shrinkage from electron beam has returned to an important critical dimension (CD) control issue - unlike multi-patterning where the smallest CD is larger than 40nm. The resist height reduces to maintain the aspect ratio below 2:1 which is critical factor for the prevention of the resist collapse. This leads to huge challenges to minimize the shrinkage of resist during the scanning electron microscope (SEM) measurement. Accurate and precise metrology of chemically amplified resist (CAR) type EUV photoresist processed pattern utilizing classical beam energy for lithography pattern such as 500V is great challenging as electron beam exposure of 1st measurement already fully shrunk the pattern. Moreover, occurrence of carbonization along with shrinkage hinders finding best conditions for not only metrology optimization but also minimized process impact. In this work, we evaluated the magnitude of shrinkage of CAR type EUV photoresists with several approaches including 0th and 1st shrinkage estimation utilizing line & space pattern and contact hole pattern as a function of landing energy dose and static/dynamic repeatability method to distinguish behaviors of shrinkage and carbonization by controlling interaction time of photoresist to its environment. One approach to trace minimized 0th shrinkage and metrology uncertainty in lithography process is utilizing 1st shrinkage (1st CD – 2nd CD) analysis together with plotting absolute value of the 1st CD as a function of dose. The other approach to trace optimization condition was comparing exposed area with electron beam and non-exposed area achieved by comparing litho/etch consecutive process on the same area. Furthermore, model fits, a simulation study were also performed.\",\"PeriodicalId\":393709,\"journal\":{\"name\":\"Metrology, Inspection, and Process Control XXXVII\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrology, Inspection, and Process Control XXXVII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2660118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology, Inspection, and Process Control XXXVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2660118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orientation measurement on EUV DRAM contact hole as an aberration correlated metric
With the extreme ultraviolet (EUV) lithography and its pitch scaling, the resist shrinkage from electron beam has returned to an important critical dimension (CD) control issue - unlike multi-patterning where the smallest CD is larger than 40nm. The resist height reduces to maintain the aspect ratio below 2:1 which is critical factor for the prevention of the resist collapse. This leads to huge challenges to minimize the shrinkage of resist during the scanning electron microscope (SEM) measurement. Accurate and precise metrology of chemically amplified resist (CAR) type EUV photoresist processed pattern utilizing classical beam energy for lithography pattern such as 500V is great challenging as electron beam exposure of 1st measurement already fully shrunk the pattern. Moreover, occurrence of carbonization along with shrinkage hinders finding best conditions for not only metrology optimization but also minimized process impact. In this work, we evaluated the magnitude of shrinkage of CAR type EUV photoresists with several approaches including 0th and 1st shrinkage estimation utilizing line & space pattern and contact hole pattern as a function of landing energy dose and static/dynamic repeatability method to distinguish behaviors of shrinkage and carbonization by controlling interaction time of photoresist to its environment. One approach to trace minimized 0th shrinkage and metrology uncertainty in lithography process is utilizing 1st shrinkage (1st CD – 2nd CD) analysis together with plotting absolute value of the 1st CD as a function of dose. The other approach to trace optimization condition was comparing exposed area with electron beam and non-exposed area achieved by comparing litho/etch consecutive process on the same area. Furthermore, model fits, a simulation study were also performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 12496 SEM overlay target design using e-beam simulation Reflective deep-ultraviolet Fourier ptychographic microscopy for nanoscale imaging Orientation measurement on EUV DRAM contact hole as an aberration correlated metric A total shift show: submilliradian tilt goniometry in scanning electron microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1