{"title":"一种在大规模宏基因组数据集中识别蛋白质家族的有效并行方法","authors":"Changjun Wu, A. Kalyanaraman","doi":"10.1145/1413370.1413406","DOIUrl":null,"url":null,"abstract":"Metagenomics is the study of environmental microbial communities using state-of-the-art genomic tools. Recent advancements in high-throughput technologies have enabled the accumulation of large volumes of metagenomic data that was until a couple of years back was deemed impractical for generation. A primary bottleneck, however, is in the lack of scalable algorithms and open source software for large-scale data processing. In this paper, we present the design and implementation of a novel parallel approach to identify protein families from large-scale metagenomic data. Given a set of peptide sequences we reduce the problem to one of detecting arbitrarily-sized dense subgraphs from bipartite graphs. Our approach efficiently parallelizes this task on a distributed memory machine through a combination of divide-and-conquer and combinatorial pattern matching heuristic techniques. We present performance and quality results of extensively testing our implementation on 160 K randomly sampled sequences from the CAMERA environmental sequence database using 512 nodes of a BlueGene/L supercomputer.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"An efficient parallel approach for identifying protein families in large-scale metagenomic data sets\",\"authors\":\"Changjun Wu, A. Kalyanaraman\",\"doi\":\"10.1145/1413370.1413406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metagenomics is the study of environmental microbial communities using state-of-the-art genomic tools. Recent advancements in high-throughput technologies have enabled the accumulation of large volumes of metagenomic data that was until a couple of years back was deemed impractical for generation. A primary bottleneck, however, is in the lack of scalable algorithms and open source software for large-scale data processing. In this paper, we present the design and implementation of a novel parallel approach to identify protein families from large-scale metagenomic data. Given a set of peptide sequences we reduce the problem to one of detecting arbitrarily-sized dense subgraphs from bipartite graphs. Our approach efficiently parallelizes this task on a distributed memory machine through a combination of divide-and-conquer and combinatorial pattern matching heuristic techniques. We present performance and quality results of extensively testing our implementation on 160 K randomly sampled sequences from the CAMERA environmental sequence database using 512 nodes of a BlueGene/L supercomputer.\",\"PeriodicalId\":230761,\"journal\":{\"name\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1413370.1413406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1413370.1413406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient parallel approach for identifying protein families in large-scale metagenomic data sets
Metagenomics is the study of environmental microbial communities using state-of-the-art genomic tools. Recent advancements in high-throughput technologies have enabled the accumulation of large volumes of metagenomic data that was until a couple of years back was deemed impractical for generation. A primary bottleneck, however, is in the lack of scalable algorithms and open source software for large-scale data processing. In this paper, we present the design and implementation of a novel parallel approach to identify protein families from large-scale metagenomic data. Given a set of peptide sequences we reduce the problem to one of detecting arbitrarily-sized dense subgraphs from bipartite graphs. Our approach efficiently parallelizes this task on a distributed memory machine through a combination of divide-and-conquer and combinatorial pattern matching heuristic techniques. We present performance and quality results of extensively testing our implementation on 160 K randomly sampled sequences from the CAMERA environmental sequence database using 512 nodes of a BlueGene/L supercomputer.