基于迁移学习的深度CNN图像识别方法

C. Iorga, V. Neagoe
{"title":"基于迁移学习的深度CNN图像识别方法","authors":"C. Iorga, V. Neagoe","doi":"10.1109/ECAI46879.2019.9042173","DOIUrl":null,"url":null,"abstract":"This paper presents a model of Deep Convolutional Neural Networks (CNN) based on transfer learning for image recognition. This means to use a Deep CNN system pretrained on the large ImageNet dataset of 14 million images and 1000 classes in order to learn feature selection. The results of the pretraining phase are transferred to the problem of classification for the images belonging to the UC Merced Land Use dataset with 21 classes. As benchmark, we have considered a Deep CNN trained with a fraction of the same UC Merced Land Use dataset containing the test images for classification. The experimental results have pointed out the obvious advantage of the Deep CNN with transfer learning (accuracy of 0.87 using pretraining over 0.46 for fully training on the same dataset).","PeriodicalId":285780,"journal":{"name":"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Deep CNN Approach with Transfer Learning for Image Recognition\",\"authors\":\"C. Iorga, V. Neagoe\",\"doi\":\"10.1109/ECAI46879.2019.9042173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model of Deep Convolutional Neural Networks (CNN) based on transfer learning for image recognition. This means to use a Deep CNN system pretrained on the large ImageNet dataset of 14 million images and 1000 classes in order to learn feature selection. The results of the pretraining phase are transferred to the problem of classification for the images belonging to the UC Merced Land Use dataset with 21 classes. As benchmark, we have considered a Deep CNN trained with a fraction of the same UC Merced Land Use dataset containing the test images for classification. The experimental results have pointed out the obvious advantage of the Deep CNN with transfer learning (accuracy of 0.87 using pretraining over 0.46 for fully training on the same dataset).\",\"PeriodicalId\":285780,\"journal\":{\"name\":\"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECAI46879.2019.9042173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI46879.2019.9042173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种基于迁移学习的深度卷积神经网络(CNN)图像识别模型。这意味着使用深度CNN系统在1400万张图像和1000个类的大型ImageNet数据集上进行预训练,以学习特征选择。预训练阶段的结果被转移到UC Merced土地使用数据集的图像分类问题,该数据集有21个类。作为基准,我们考虑使用包含测试图像的相同UC默塞德土地使用数据集的一小部分训练深度CNN进行分类。实验结果指出了具有迁移学习的Deep CNN的明显优势(使用预训练的准确率为0.87,而在同一数据集上进行完全训练的准确率为0.46)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep CNN Approach with Transfer Learning for Image Recognition
This paper presents a model of Deep Convolutional Neural Networks (CNN) based on transfer learning for image recognition. This means to use a Deep CNN system pretrained on the large ImageNet dataset of 14 million images and 1000 classes in order to learn feature selection. The results of the pretraining phase are transferred to the problem of classification for the images belonging to the UC Merced Land Use dataset with 21 classes. As benchmark, we have considered a Deep CNN trained with a fraction of the same UC Merced Land Use dataset containing the test images for classification. The experimental results have pointed out the obvious advantage of the Deep CNN with transfer learning (accuracy of 0.87 using pretraining over 0.46 for fully training on the same dataset).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Biometric Security Model with Co-Occurrence Matrices for Palmprint features Nonverbal Communication in Job Interviews. A Case Study on Local Organisations Current consumption analysis for 8-bit microcontrollers Biometric System based on Facial Recognition A Case Study of Multi-Robot Systems Coordination using PSO simulated in Webots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1