C. Tirumurti, S. Kundu, S. Sur-Kolay, Yi-Shing Chang
{"title":"集成电路电源开关噪声相关故障的建模方法","authors":"C. Tirumurti, S. Kundu, S. Sur-Kolay, Yi-Shing Chang","doi":"10.1109/DATE.2004.1269036","DOIUrl":null,"url":null,"abstract":"Power density of high-end microprocessors has been increasing by approximately 80% per technology generation, while the voltage is scaling by a factor of 0.8. This leads to 225% increase in current per unit area in successive generation of technologies. The cost of maintaining the same IR drop becomes too high. This leads to compromise in power delivery and power grid becomes a performance limiter. Traditional performance related test techniques with transition and path delay fault models focus on testing the logic but not the power delivery. In this paper we view power grid as performance limiter and develop a fault model to address the problem of vector generation for delay faults arising out of power delivery problems. A fault extraction methodology applied to a microprocessor design block is explained.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"A modeling approach for addressing power supply switching noise related failures of integrated circuits\",\"authors\":\"C. Tirumurti, S. Kundu, S. Sur-Kolay, Yi-Shing Chang\",\"doi\":\"10.1109/DATE.2004.1269036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power density of high-end microprocessors has been increasing by approximately 80% per technology generation, while the voltage is scaling by a factor of 0.8. This leads to 225% increase in current per unit area in successive generation of technologies. The cost of maintaining the same IR drop becomes too high. This leads to compromise in power delivery and power grid becomes a performance limiter. Traditional performance related test techniques with transition and path delay fault models focus on testing the logic but not the power delivery. In this paper we view power grid as performance limiter and develop a fault model to address the problem of vector generation for delay faults arising out of power delivery problems. A fault extraction methodology applied to a microprocessor design block is explained.\",\"PeriodicalId\":335658,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2004.1269036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1269036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A modeling approach for addressing power supply switching noise related failures of integrated circuits
Power density of high-end microprocessors has been increasing by approximately 80% per technology generation, while the voltage is scaling by a factor of 0.8. This leads to 225% increase in current per unit area in successive generation of technologies. The cost of maintaining the same IR drop becomes too high. This leads to compromise in power delivery and power grid becomes a performance limiter. Traditional performance related test techniques with transition and path delay fault models focus on testing the logic but not the power delivery. In this paper we view power grid as performance limiter and develop a fault model to address the problem of vector generation for delay faults arising out of power delivery problems. A fault extraction methodology applied to a microprocessor design block is explained.