智能转子组件实现高性能永磁转子的正平衡概念

Wilken Wöβner, Johannes T. Stoll, Max Oliveira Flammer, Peter Wurster, Manuel Peter, J. Fleischer
{"title":"智能转子组件实现高性能永磁转子的正平衡概念","authors":"Wilken Wöβner, Johannes T. Stoll, Max Oliveira Flammer, Peter Wurster, Manuel Peter, J. Fleischer","doi":"10.1109/EDPC.2018.8658367","DOIUrl":null,"url":null,"abstract":"The increasing electrification of vehicles poses new challenges to the automotive industry. Especially in highperformance applications, the drive system is designed for high rotational speeds, best dynamic behaviour and optimal power-to-weight ratio. However, most rotor designs for drivetrain application are commonly designed for negative balancing. In that case, balancing discs are used to enable the subtraction of a small amount of mass, thus balancing the rotor. The excessive mass of the balancing discs must cover all production deviations and leads to massive balancing discs with a weight ratio of up to 10% for the overall rotor system. In order to reduce the weight and the installation space for permanent magnet rotors, this article presents an approach that allows to avoid excessive masses by using a rotor components arrangement with minimized unbalance followed by a positive balancing process. In preliminary investigations, the initial rotor unbalance occurring in a state-of-the-art assembly process was therefore significantly reduced by using an optimized selective assembly. Based on researched state-of-the-art positive balancing concepts, new positive balancing concepts are systematically developed, tested and evaluated for applicability in high-performing motors. It shows that the required balancing quality in high-performance applications (usually <G2.5) can be achieved with a positive balancing concept. The results are discussed within this article and integrated into improvement measures for the design of permanent magnet rotors.","PeriodicalId":358881,"journal":{"name":"2018 8th International Electric Drives Production Conference (EDPC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intelligent Rotor Assembly Enabling Positive Balancing Concepts for High-Performance Permanent Magnet Rotors\",\"authors\":\"Wilken Wöβner, Johannes T. Stoll, Max Oliveira Flammer, Peter Wurster, Manuel Peter, J. Fleischer\",\"doi\":\"10.1109/EDPC.2018.8658367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing electrification of vehicles poses new challenges to the automotive industry. Especially in highperformance applications, the drive system is designed for high rotational speeds, best dynamic behaviour and optimal power-to-weight ratio. However, most rotor designs for drivetrain application are commonly designed for negative balancing. In that case, balancing discs are used to enable the subtraction of a small amount of mass, thus balancing the rotor. The excessive mass of the balancing discs must cover all production deviations and leads to massive balancing discs with a weight ratio of up to 10% for the overall rotor system. In order to reduce the weight and the installation space for permanent magnet rotors, this article presents an approach that allows to avoid excessive masses by using a rotor components arrangement with minimized unbalance followed by a positive balancing process. In preliminary investigations, the initial rotor unbalance occurring in a state-of-the-art assembly process was therefore significantly reduced by using an optimized selective assembly. Based on researched state-of-the-art positive balancing concepts, new positive balancing concepts are systematically developed, tested and evaluated for applicability in high-performing motors. It shows that the required balancing quality in high-performance applications (usually <G2.5) can be achieved with a positive balancing concept. The results are discussed within this article and integrated into improvement measures for the design of permanent magnet rotors.\",\"PeriodicalId\":358881,\"journal\":{\"name\":\"2018 8th International Electric Drives Production Conference (EDPC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 8th International Electric Drives Production Conference (EDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDPC.2018.8658367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Electric Drives Production Conference (EDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPC.2018.8658367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

汽车电气化程度的提高对汽车工业提出了新的挑战。特别是在高性能应用中,驱动系统专为高转速、最佳动态性能和最佳功率重量比而设计。然而,大多数转子设计的动力传动系统应用通常设计为负平衡。在这种情况下,使用平衡盘来减少少量的质量,从而平衡转子。平衡盘的过量质量必须覆盖所有生产偏差,并导致整个转子系统的重量比高达10%的巨大平衡盘。为了减轻重量和安装空间的永磁转子,这篇文章提出了一种方法,允许避免过多的质量,通过使用转子组件安排与最小的不平衡,然后是一个积极的平衡过程。在初步调查中,最初的转子不平衡发生在最先进的装配过程中,因此,通过使用优化的选择性装配显着减少。在研究最新的正平衡概念的基础上,系统地开发了新的正平衡概念,并对其在高性能电机中的适用性进行了测试和评估。它表明,高性能应用程序(通常本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Rotor Assembly Enabling Positive Balancing Concepts for High-Performance Permanent Magnet Rotors
The increasing electrification of vehicles poses new challenges to the automotive industry. Especially in highperformance applications, the drive system is designed for high rotational speeds, best dynamic behaviour and optimal power-to-weight ratio. However, most rotor designs for drivetrain application are commonly designed for negative balancing. In that case, balancing discs are used to enable the subtraction of a small amount of mass, thus balancing the rotor. The excessive mass of the balancing discs must cover all production deviations and leads to massive balancing discs with a weight ratio of up to 10% for the overall rotor system. In order to reduce the weight and the installation space for permanent magnet rotors, this article presents an approach that allows to avoid excessive masses by using a rotor components arrangement with minimized unbalance followed by a positive balancing process. In preliminary investigations, the initial rotor unbalance occurring in a state-of-the-art assembly process was therefore significantly reduced by using an optimized selective assembly. Based on researched state-of-the-art positive balancing concepts, new positive balancing concepts are systematically developed, tested and evaluated for applicability in high-performing motors. It shows that the required balancing quality in high-performance applications (usually
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Performance and Manufacturing Aspects of an Insert Winding and a Hairpin Winding for an Automotive Machine Application Alternative Fabrication Strategies for the Production of Axial Flux Permanent Magnet Synchronous Motors for Enhanced Performance Characteristics Systematic Development and Comparison of Concepts for an Automated Series-Flexible Trickle Winding Process Exhaustive Data- and Problem-Driven use Case Identification and Implementation for Electric Drive Production High Frequency Modelling of Permanent Magnet Synchronous Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1