LNGC低频阻尼的URANS预测

Frederick Jaouen, A. Koop, Lucas Vatinel
{"title":"LNGC低频阻尼的URANS预测","authors":"Frederick Jaouen, A. Koop, Lucas Vatinel","doi":"10.1115/omae2019-95171","DOIUrl":null,"url":null,"abstract":"\n The horizontal motions of a moored offshore structure in waves are dominated by the resonance phenomena that occur at the natural frequencies of the system. Therefore, the maximum excursions of the structure depend on both the wave loads and the damping in the system. At present, potential flow calculations are employed for predicting the wave loads on offshore structures. However, such methods cannot predict hydrodynamic damping which is dominated by viscous effects. Therefore, the current practice in the industry is to obtain the low-frequency damping based on model testing. Nowadays, CFD simulations also have the potential to predict the low-frequency viscous damping of offshore structures in calm water. To obtain confidence in the accuracy of CFD simulations, a proper validation of the results of such CFD calculations is essential.\n In this paper, the flow around a forced surging or swaying LNGC is calculated using the CFD code ReFRESCO. The objective is to assess the accuracy and applicability of CFD for predicting the low-frequency viscous damping. After a description of the code and the used numerical methods, the results are presented and compared with results from model tests. Both inertia and damping coefficients are analyzed from the calculated hydrodynamics loads. Extensive numerical studies have been carried out to determine the influence of grid resolution, time step and iterative convergence on the flow solution and on the calculated damping. The numerical uncertainty of the results are assessed for one combination of amplitude and period for the surge motion. The CFD results are compared to experimental results indicating that the calculated damping coefficients agree within 5% for both surge and sway motion.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"URANS Predictions of Low-Frequency Damping of a LNGC\",\"authors\":\"Frederick Jaouen, A. Koop, Lucas Vatinel\",\"doi\":\"10.1115/omae2019-95171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The horizontal motions of a moored offshore structure in waves are dominated by the resonance phenomena that occur at the natural frequencies of the system. Therefore, the maximum excursions of the structure depend on both the wave loads and the damping in the system. At present, potential flow calculations are employed for predicting the wave loads on offshore structures. However, such methods cannot predict hydrodynamic damping which is dominated by viscous effects. Therefore, the current practice in the industry is to obtain the low-frequency damping based on model testing. Nowadays, CFD simulations also have the potential to predict the low-frequency viscous damping of offshore structures in calm water. To obtain confidence in the accuracy of CFD simulations, a proper validation of the results of such CFD calculations is essential.\\n In this paper, the flow around a forced surging or swaying LNGC is calculated using the CFD code ReFRESCO. The objective is to assess the accuracy and applicability of CFD for predicting the low-frequency viscous damping. After a description of the code and the used numerical methods, the results are presented and compared with results from model tests. Both inertia and damping coefficients are analyzed from the calculated hydrodynamics loads. Extensive numerical studies have been carried out to determine the influence of grid resolution, time step and iterative convergence on the flow solution and on the calculated damping. The numerical uncertainty of the results are assessed for one combination of amplitude and period for the surge motion. The CFD results are compared to experimental results indicating that the calculated damping coefficients agree within 5% for both surge and sway motion.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

系泊离岸结构在波浪中的水平运动受系统固有频率共振现象的支配。因此,结构的最大位移取决于系统中的波浪载荷和阻尼。目前,海上结构物波浪荷载的预测主要采用势流计算。然而,这种方法不能预测由粘性效应主导的水动力阻尼。因此,目前业界的做法是在模型试验的基础上获得低频阻尼。目前,CFD模拟也有可能预测海上结构在平静水域的低频粘性阻尼。为了获得对CFD模拟准确性的信心,对此类CFD计算结果进行适当的验证是必不可少的。本文采用CFD软件ReFRESCO计算了受迫喘振或摇摆液化天然气船的绕流问题。目的是评估CFD预测低频粘性阻尼的准确性和适用性。在描述了代码和所使用的数值方法之后,给出了结果,并与模型试验的结果进行了比较。从计算得到的流体动力载荷出发,分析了惯性系数和阻尼系数。为了确定网格分辨率、时间步长和迭代收敛对流动解和计算阻尼的影响,进行了大量的数值研究。对波浪运动的振幅和周期组合进行了数值不确定性评估。将CFD计算结果与实验结果进行了比较,结果表明计算得到的阻尼系数在5%以内一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
URANS Predictions of Low-Frequency Damping of a LNGC
The horizontal motions of a moored offshore structure in waves are dominated by the resonance phenomena that occur at the natural frequencies of the system. Therefore, the maximum excursions of the structure depend on both the wave loads and the damping in the system. At present, potential flow calculations are employed for predicting the wave loads on offshore structures. However, such methods cannot predict hydrodynamic damping which is dominated by viscous effects. Therefore, the current practice in the industry is to obtain the low-frequency damping based on model testing. Nowadays, CFD simulations also have the potential to predict the low-frequency viscous damping of offshore structures in calm water. To obtain confidence in the accuracy of CFD simulations, a proper validation of the results of such CFD calculations is essential. In this paper, the flow around a forced surging or swaying LNGC is calculated using the CFD code ReFRESCO. The objective is to assess the accuracy and applicability of CFD for predicting the low-frequency viscous damping. After a description of the code and the used numerical methods, the results are presented and compared with results from model tests. Both inertia and damping coefficients are analyzed from the calculated hydrodynamics loads. Extensive numerical studies have been carried out to determine the influence of grid resolution, time step and iterative convergence on the flow solution and on the calculated damping. The numerical uncertainty of the results are assessed for one combination of amplitude and period for the surge motion. The CFD results are compared to experimental results indicating that the calculated damping coefficients agree within 5% for both surge and sway motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Validation of CFD Analysis Procedure for Predicting Wind Load on Commercial Ships Multi-Phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel Numerical Study of Breaking Waves and Associated Wave Forces on a Jacket Substructure for Offshore Wind Turbines Numerical Simulation of Trim Optimization on Resistance Performance Based on CFD Method Fundamental CFD Study on the Hydrodynamic Performance of the DARPA SUBOFF Submarine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1