利用机器学习技术进行基于脑电图的正负情绪分类

Yuta Kasuga, Jungpil Shin, Md. Al Mehedi Hasan, Y. Okuyama, Yoichi Tomioka
{"title":"利用机器学习技术进行基于脑电图的正负情绪分类","authors":"Yuta Kasuga, Jungpil Shin, Md. Al Mehedi Hasan, Y. Okuyama, Yoichi Tomioka","doi":"10.1109/MCSoC51149.2021.00027","DOIUrl":null,"url":null,"abstract":"The aim of this study is to find useful electrodes for positive-negative emotion classification based on EEG. We collected EEG signals from 30 people aged 19-38 using 14 electrodes. We used two movies for positive and negative emotions. First, we extracted the power spectrum from the EEG data, normalized the data, and extracted frequency-domain statistical parameters therefrom. When the features were applied to Random Forests (RF), 85.4%, 83.8%, and 83.4% accuracy was obtained for P8, P7, and FC6 electrodes, respectively. This indicates that the P8, P7 and FC6 electrodes are the useful electrode in positive-negative emotion classification.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EEG-based Positive-Negative Emotion Classification Using Machine Learning Techniques\",\"authors\":\"Yuta Kasuga, Jungpil Shin, Md. Al Mehedi Hasan, Y. Okuyama, Yoichi Tomioka\",\"doi\":\"10.1109/MCSoC51149.2021.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to find useful electrodes for positive-negative emotion classification based on EEG. We collected EEG signals from 30 people aged 19-38 using 14 electrodes. We used two movies for positive and negative emotions. First, we extracted the power spectrum from the EEG data, normalized the data, and extracted frequency-domain statistical parameters therefrom. When the features were applied to Random Forests (RF), 85.4%, 83.8%, and 83.4% accuracy was obtained for P8, P7, and FC6 electrodes, respectively. This indicates that the P8, P7 and FC6 electrodes are the useful electrode in positive-negative emotion classification.\",\"PeriodicalId\":166811,\"journal\":{\"name\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC51149.2021.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是寻找有效的电极,用于基于脑电图的正负情绪分类。我们用14个电极收集了30个19-38岁的人的脑电图信号。我们用两部电影来表达积极和消极的情绪。首先从脑电数据中提取功率谱,对数据进行归一化处理,提取频域统计参数;当特征应用于随机森林(RF)时,P8、P7和FC6电极的准确率分别为85.4%、83.8%和83.4%。这表明P8、P7和FC6电极是积极-消极情绪分类的有用电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG-based Positive-Negative Emotion Classification Using Machine Learning Techniques
The aim of this study is to find useful electrodes for positive-negative emotion classification based on EEG. We collected EEG signals from 30 people aged 19-38 using 14 electrodes. We used two movies for positive and negative emotions. First, we extracted the power spectrum from the EEG data, normalized the data, and extracted frequency-domain statistical parameters therefrom. When the features were applied to Random Forests (RF), 85.4%, 83.8%, and 83.4% accuracy was obtained for P8, P7, and FC6 electrodes, respectively. This indicates that the P8, P7 and FC6 electrodes are the useful electrode in positive-negative emotion classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distance Estimation Method to Railway Crossing Using Warning Signs FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Enhancing Autotuning Capability with a History Database UI Method to Support Knowledge Creation in Hybrid Museum Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1