用于文本到图像合成的多分支语义学习网络

Jiading Ling, Xingcai Wu, Zhenguo Yang, Xudong Mao, Qing Li, Wenyin Liu
{"title":"用于文本到图像合成的多分支语义学习网络","authors":"Jiading Ling, Xingcai Wu, Zhenguo Yang, Xudong Mao, Qing Li, Wenyin Liu","doi":"10.1145/3469877.3490567","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-branch semantic learning network (MSLN) to generate image according to textual description by taking into account global and local textual semantics, which consists of two stages. The first stage generates a coarse-grained image based on the sentence features. In the second stage, a multi-branch fine-grained generation model is constructed to inject the sentence-level and word-level semantics into two coarse-grained images by global and local attention modules, which generate global and local fine-grained image textures, respectively. In particular, we devise a channel fusion module (CFM) to fuse the global and local fine-grained features in the multi-branch fine-grained stage and generate the output image. Extensive experiments conducted on the CUB-200 dataset and Oxford-102 dataset demonstrate the superior performance of the proposed method. (e.g., FID is reduced from 16.09 to 14.43 on CUB-200).","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"333 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-branch Semantic Learning Network for Text-to-Image Synthesis\",\"authors\":\"Jiading Ling, Xingcai Wu, Zhenguo Yang, Xudong Mao, Qing Li, Wenyin Liu\",\"doi\":\"10.1145/3469877.3490567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a multi-branch semantic learning network (MSLN) to generate image according to textual description by taking into account global and local textual semantics, which consists of two stages. The first stage generates a coarse-grained image based on the sentence features. In the second stage, a multi-branch fine-grained generation model is constructed to inject the sentence-level and word-level semantics into two coarse-grained images by global and local attention modules, which generate global and local fine-grained image textures, respectively. In particular, we devise a channel fusion module (CFM) to fuse the global and local fine-grained features in the multi-branch fine-grained stage and generate the output image. Extensive experiments conducted on the CUB-200 dataset and Oxford-102 dataset demonstrate the superior performance of the proposed method. (e.g., FID is reduced from 16.09 to 14.43 on CUB-200).\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"333 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种多分支语义学习网络(MSLN)来根据文本描述生成图像,该网络考虑了全局和局部文本语义,分为两个阶段。第一阶段根据句子特征生成粗粒度图像。第二阶段,构建多分支细粒度生成模型,通过全局关注模块和局部关注模块将句子级和词级语义注入两幅粗粒度图像中,分别生成全局和局部细粒度图像纹理;特别地,我们设计了一个通道融合模块(CFM)来融合多分支细粒度阶段的全局和局部细粒度特征并生成输出图像。在CUB-200数据集和Oxford-102数据集上进行的大量实验证明了该方法的优越性能。(例如,在cube -200上FID从16.09降低到14.43)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-branch Semantic Learning Network for Text-to-Image Synthesis
In this paper, we propose a multi-branch semantic learning network (MSLN) to generate image according to textual description by taking into account global and local textual semantics, which consists of two stages. The first stage generates a coarse-grained image based on the sentence features. In the second stage, a multi-branch fine-grained generation model is constructed to inject the sentence-level and word-level semantics into two coarse-grained images by global and local attention modules, which generate global and local fine-grained image textures, respectively. In particular, we devise a channel fusion module (CFM) to fuse the global and local fine-grained features in the multi-branch fine-grained stage and generate the output image. Extensive experiments conducted on the CUB-200 dataset and Oxford-102 dataset demonstrate the superior performance of the proposed method. (e.g., FID is reduced from 16.09 to 14.43 on CUB-200).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1