一种基于自编码器神经网络和距离编码的雷达数据压缩方法

Zelong Hu, Feng Yang, Xu Qiao, Fanruo Li
{"title":"一种基于自编码器神经网络和距离编码的雷达数据压缩方法","authors":"Zelong Hu, Feng Yang, Xu Qiao, Fanruo Li","doi":"10.1117/12.2689784","DOIUrl":null,"url":null,"abstract":"Ground Penetrating Radar (GPR) data requires a significant amount of network bandwidth and storage space for transmission and storage due to the large number of channels and vast amount of data. In this paper, we propose an improved method for compressing GPR data. Firstly, we analyze and preprocess the features of the data to enhance its compression potential. Secondly, we introduce convolutional layers into the AutoEncoder to improve its generalization ability. We then use multiple-level compression to further compress the data based on the radar data's features. Finally, we introduce range encoding for secondary compression. Simulation experiments demonstrate that our proposed algorithm can effectively compress radar data while maintaining high compression ratios and speed.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A radar data compression method based on autoencoder neural network and range encoding\",\"authors\":\"Zelong Hu, Feng Yang, Xu Qiao, Fanruo Li\",\"doi\":\"10.1117/12.2689784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground Penetrating Radar (GPR) data requires a significant amount of network bandwidth and storage space for transmission and storage due to the large number of channels and vast amount of data. In this paper, we propose an improved method for compressing GPR data. Firstly, we analyze and preprocess the features of the data to enhance its compression potential. Secondly, we introduce convolutional layers into the AutoEncoder to improve its generalization ability. We then use multiple-level compression to further compress the data based on the radar data's features. Finally, we introduce range encoding for secondary compression. Simulation experiments demonstrate that our proposed algorithm can effectively compress radar data while maintaining high compression ratios and speed.\",\"PeriodicalId\":118234,\"journal\":{\"name\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2689784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

探地雷达(Ground Penetrating Radar,简称GPR)数据由于通道多、数据量大,需要大量的网络带宽和存储空间进行传输和存储。本文提出了一种改进的探地雷达数据压缩方法。首先对数据特征进行分析和预处理,增强数据的压缩潜力。其次,在自编码器中引入卷积层,提高其泛化能力。然后根据雷达数据的特点,采用多级压缩进一步压缩数据。最后,我们介绍了用于二次压缩的范围编码。仿真实验表明,该算法可以有效地压缩雷达数据,同时保持较高的压缩比和压缩速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A radar data compression method based on autoencoder neural network and range encoding
Ground Penetrating Radar (GPR) data requires a significant amount of network bandwidth and storage space for transmission and storage due to the large number of channels and vast amount of data. In this paper, we propose an improved method for compressing GPR data. Firstly, we analyze and preprocess the features of the data to enhance its compression potential. Secondly, we introduce convolutional layers into the AutoEncoder to improve its generalization ability. We then use multiple-level compression to further compress the data based on the radar data's features. Finally, we introduce range encoding for secondary compression. Simulation experiments demonstrate that our proposed algorithm can effectively compress radar data while maintaining high compression ratios and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A smart brain controlled wheelchair based on TGAM Multi-direction prediction based on SALSTM model for ship motion Study on heart disease prediction based on SVM-GBDT hybrid model Research on intelligent monitoring of roof distributed photovoltaics based on high-reliable power line and wireless communication Design of low-power acceleration processor for convolutional neural networks based on RISC-V
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1