基于坐标旋转的nD - FastICA低复杂度硬件加速器

Swati Bhardwaj, Shashank Raghuraman, A. Acharyya
{"title":"基于坐标旋转的nD - FastICA低复杂度硬件加速器","authors":"Swati Bhardwaj, Shashank Raghuraman, A. Acharyya","doi":"10.1109/SiPS.2017.8110000","DOIUrl":null,"url":null,"abstract":"This paper proposes a low complex hardware accelerator algorithmic modification for n-dimensional (nD) FastICA methodology based on Coordinate Rotation Digital Computer (CORDIC) to attain high computation speed. The most complex and time consuming update stage and convergence check required for computation of the nth weight vector are eliminated in the proposed methodology. Using the Gram-Schmidt Orthogonalization stage and normalization stage to calculate nth weight vector in an entirely sequential procedure of CORDIC-based FastICA results in a significant gain in terms of the computation time. The proposed methodology has been functionally verified and validated by applying it for separating 6D speech signals. It has been implemented on hardware using Verilog HDL and synthesized using UMC 180nm technology. The average improvement in computation time obtained by using the proposed methodology for 4D to 6D FastICA with 1024 samples, considering the minimum case of two iterations for nth stage, was found to be 98.79 %.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low complexity hardware accelerator for nD FastICA based on coordinate rotation\",\"authors\":\"Swati Bhardwaj, Shashank Raghuraman, A. Acharyya\",\"doi\":\"10.1109/SiPS.2017.8110000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a low complex hardware accelerator algorithmic modification for n-dimensional (nD) FastICA methodology based on Coordinate Rotation Digital Computer (CORDIC) to attain high computation speed. The most complex and time consuming update stage and convergence check required for computation of the nth weight vector are eliminated in the proposed methodology. Using the Gram-Schmidt Orthogonalization stage and normalization stage to calculate nth weight vector in an entirely sequential procedure of CORDIC-based FastICA results in a significant gain in terms of the computation time. The proposed methodology has been functionally verified and validated by applying it for separating 6D speech signals. It has been implemented on hardware using Verilog HDL and synthesized using UMC 180nm technology. The average improvement in computation time obtained by using the proposed methodology for 4D to 6D FastICA with 1024 samples, considering the minimum case of two iterations for nth stage, was found to be 98.79 %.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8110000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8110000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于坐标旋转数字计算机(CORDIC)的低复杂度硬件加速器算法对n维(nD) FastICA方法的改进,以获得较高的计算速度。该方法消除了计算第n个权向量所需的最复杂、最耗时的更新阶段和收敛性检查。在基于cordic的FastICA的完全顺序过程中,使用Gram-Schmidt正交化阶段和归一化阶段来计算第n个权重向量,结果在计算时间方面有显着的增益。通过对6D语音信号的分离,对该方法进行了功能验证和验证。采用Verilog HDL在硬件上实现,采用UMC 180nm工艺合成。考虑到第n阶段两次迭代的最小情况,采用所提出的方法对1024个样本的4D到6D FastICA计算时间的平均改进为98.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low complexity hardware accelerator for nD FastICA based on coordinate rotation
This paper proposes a low complex hardware accelerator algorithmic modification for n-dimensional (nD) FastICA methodology based on Coordinate Rotation Digital Computer (CORDIC) to attain high computation speed. The most complex and time consuming update stage and convergence check required for computation of the nth weight vector are eliminated in the proposed methodology. Using the Gram-Schmidt Orthogonalization stage and normalization stage to calculate nth weight vector in an entirely sequential procedure of CORDIC-based FastICA results in a significant gain in terms of the computation time. The proposed methodology has been functionally verified and validated by applying it for separating 6D speech signals. It has been implemented on hardware using Verilog HDL and synthesized using UMC 180nm technology. The average improvement in computation time obtained by using the proposed methodology for 4D to 6D FastICA with 1024 samples, considering the minimum case of two iterations for nth stage, was found to be 98.79 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays Design space exploration of dataflow-based Smith-Waterman FPGA implementations Hardware error correction using local syndromes A stochastic number representation for fully homomorphic cryptography Statistical analysis of Post-HEVC encoded videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1