基于滤波器的局部特征选择的离散克隆选择算法

Yi Wang, Tao Li, Xiaojie Liu, Jian Yao
{"title":"基于滤波器的局部特征选择的离散克隆选择算法","authors":"Yi Wang, Tao Li, Xiaojie Liu, Jian Yao","doi":"10.1109/CEC55065.2022.9870318","DOIUrl":null,"url":null,"abstract":"Feature selection algorithms aim to improve the per-formance of machine learning algorithms by removing irrelevant and redundant features. Various feature selection algorithms have been proposed, but most of them select a global feature subset for characterizing the entire sample space. In contrast, this study proposes an efficient discrete clonal selection algorithm for local feature selection called DCSA-LFS with three features: (1) local sample behaviors are considered, and a local clustering-based evaluation criterion is used to select a distinct optimized feature subset for each different sample region; (2) an improved discrete clonal selection algorithm is proposed, which uses a differential evolution-based mutation operator to enhance the search capability of clonal selection algorithms; and (3) a two-part antibody representation is adopted to automatically adjust the weight-related parameter. Experimental results on twelve UCI datasets show that DCSA-LFS is competitive with traditional filter-based feature selection algorithms and a clonal selection algorithm-based local feature selection algorithm.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A discrete clonal selection algorithm for filter-based local feature selection\",\"authors\":\"Yi Wang, Tao Li, Xiaojie Liu, Jian Yao\",\"doi\":\"10.1109/CEC55065.2022.9870318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection algorithms aim to improve the per-formance of machine learning algorithms by removing irrelevant and redundant features. Various feature selection algorithms have been proposed, but most of them select a global feature subset for characterizing the entire sample space. In contrast, this study proposes an efficient discrete clonal selection algorithm for local feature selection called DCSA-LFS with three features: (1) local sample behaviors are considered, and a local clustering-based evaluation criterion is used to select a distinct optimized feature subset for each different sample region; (2) an improved discrete clonal selection algorithm is proposed, which uses a differential evolution-based mutation operator to enhance the search capability of clonal selection algorithms; and (3) a two-part antibody representation is adopted to automatically adjust the weight-related parameter. Experimental results on twelve UCI datasets show that DCSA-LFS is competitive with traditional filter-based feature selection algorithms and a clonal selection algorithm-based local feature selection algorithm.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征选择算法旨在通过去除不相关和冗余的特征来提高机器学习算法的性能。目前已经提出了多种特征选择算法,但大多数算法都选择一个全局特征子集来表征整个样本空间。本文提出了一种高效的局部特征选择离散克隆算法DCSA-LFS,该算法具有以下三个特征:(1)考虑局部样本行为,采用基于局部聚类的评价准则,为每个不同的样本区域选择不同的优化特征子集;(2)提出了一种改进的离散克隆选择算法,该算法使用基于差分进化的突变算子来增强克隆选择算法的搜索能力;(3)采用两部分抗体表示法自动调整权重相关参数。在12个UCI数据集上的实验结果表明,DCSA-LFS与传统的基于滤波器的特征选择算法和基于克隆选择算法的局部特征选择算法具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A discrete clonal selection algorithm for filter-based local feature selection
Feature selection algorithms aim to improve the per-formance of machine learning algorithms by removing irrelevant and redundant features. Various feature selection algorithms have been proposed, but most of them select a global feature subset for characterizing the entire sample space. In contrast, this study proposes an efficient discrete clonal selection algorithm for local feature selection called DCSA-LFS with three features: (1) local sample behaviors are considered, and a local clustering-based evaluation criterion is used to select a distinct optimized feature subset for each different sample region; (2) an improved discrete clonal selection algorithm is proposed, which uses a differential evolution-based mutation operator to enhance the search capability of clonal selection algorithms; and (3) a two-part antibody representation is adopted to automatically adjust the weight-related parameter. Experimental results on twelve UCI datasets show that DCSA-LFS is competitive with traditional filter-based feature selection algorithms and a clonal selection algorithm-based local feature selection algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1