异构平台上高级数据流程序的性能评估

Aurelien Bloch, S. Brunet, M. Mattavelli
{"title":"异构平台上高级数据流程序的性能评估","authors":"Aurelien Bloch, S. Brunet, M. Mattavelli","doi":"10.1109/MCSoC51149.2021.00018","DOIUrl":null,"url":null,"abstract":"The performance of programs written in languages following the dataflow model of computation (MoC) largely depends on the configuration (partitioning, mapping, scheduling, buffer dimensioning) chosen during the synthesis stages. Furthermore, this programming paradigm is particularly well suited for heterogeneous parallel systems because it is inherently free of memory contention and exposes parallel opportunities. Both of these statements show the necessity for a way to easily and automatically evaluate and find good design configurations. The paper describes the methodology required for clock-accurate profiling of high-level dataflow programs written in RVL-CAL when synthesized on heterogeneous CPU/GPU co-processing platforms. It also extends to the heterogeneous paradigm an existing methodology for qualitatively estimating the performance of such programs as a function of the provided configuration. This, without the need to synthesize and profile every single configuration on the actual hardware platform. This approach is validated using two application programs and several configurations.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Estimation of High-Level Dataflow Program on Heterogeneous Platforms\",\"authors\":\"Aurelien Bloch, S. Brunet, M. Mattavelli\",\"doi\":\"10.1109/MCSoC51149.2021.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of programs written in languages following the dataflow model of computation (MoC) largely depends on the configuration (partitioning, mapping, scheduling, buffer dimensioning) chosen during the synthesis stages. Furthermore, this programming paradigm is particularly well suited for heterogeneous parallel systems because it is inherently free of memory contention and exposes parallel opportunities. Both of these statements show the necessity for a way to easily and automatically evaluate and find good design configurations. The paper describes the methodology required for clock-accurate profiling of high-level dataflow programs written in RVL-CAL when synthesized on heterogeneous CPU/GPU co-processing platforms. It also extends to the heterogeneous paradigm an existing methodology for qualitatively estimating the performance of such programs as a function of the provided configuration. This, without the need to synthesize and profile every single configuration on the actual hardware platform. This approach is validated using two application programs and several configurations.\",\"PeriodicalId\":166811,\"journal\":{\"name\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC51149.2021.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

遵循数据流计算模型(MoC)的语言编写的程序的性能在很大程度上取决于在合成阶段选择的配置(分区、映射、调度、缓冲区尺寸)。此外,这种编程范式特别适合于异构并行系统,因为它本质上不存在内存争用,并提供了并行的机会。这两种说法都表明,需要一种方法来轻松、自动地评估和找到良好的设计配置。本文描述了在异构CPU/GPU协同处理平台上合成时,用RVL-CAL编写的高级数据流程序的时钟精确分析所需的方法。它还扩展到异构范式,这是一种现有的方法,用于定性地估计这些程序作为所提供配置的功能的性能。这样就不需要综合和分析实际硬件平台上的每个配置。使用两个应用程序和几种配置验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Estimation of High-Level Dataflow Program on Heterogeneous Platforms
The performance of programs written in languages following the dataflow model of computation (MoC) largely depends on the configuration (partitioning, mapping, scheduling, buffer dimensioning) chosen during the synthesis stages. Furthermore, this programming paradigm is particularly well suited for heterogeneous parallel systems because it is inherently free of memory contention and exposes parallel opportunities. Both of these statements show the necessity for a way to easily and automatically evaluate and find good design configurations. The paper describes the methodology required for clock-accurate profiling of high-level dataflow programs written in RVL-CAL when synthesized on heterogeneous CPU/GPU co-processing platforms. It also extends to the heterogeneous paradigm an existing methodology for qualitatively estimating the performance of such programs as a function of the provided configuration. This, without the need to synthesize and profile every single configuration on the actual hardware platform. This approach is validated using two application programs and several configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distance Estimation Method to Railway Crossing Using Warning Signs FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Enhancing Autotuning Capability with a History Database UI Method to Support Knowledge Creation in Hybrid Museum Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1