三种半潜式浮式海上风力机动力响应比较研究

W. Shi, Lixian Zhang, Ning Dezhi, Zhiyu Jiang, C. Michailides, M. Karimirad
{"title":"三种半潜式浮式海上风力机动力响应比较研究","authors":"W. Shi, Lixian Zhang, Ning Dezhi, Zhiyu Jiang, C. Michailides, M. Karimirad","doi":"10.1115/OMAE2019-96221","DOIUrl":null,"url":null,"abstract":"\n Currently, there is a great interest to globally develop offshore wind energy due to the greenhouse effect and energy crisis. Great efforts have been devoted to develop reliable floating offshore wind energy technology to exploit the wind energy resources in deep seas. This paper presents a comparative study of the dynamic response of three different semisubmersible floating wind turbine structures. All the three platforms support the same 5MW wind turbine. The platforms examined are: a V-shaped Semi, an OC4-DeepCwind Semi and a Braceless Semi at 200 m water depth. A dynamic analysis is carried out in order to calculate and compare the performance of these platforms. The comparison is made on the rigid body motions of the semisubmersible platform and tensions of the mooring lines. The presented comparison is based on statistical values and spectra of the time series of the examined response quantities. Coupling effects are more significant for the V-shaped Semi platform. The V-shaped Semi and the Braceless Semi show a more rational motion response under the investigated load cases. The results of this analysis may help to resolve the fundamental design tradeoffs between among different floating system concepts.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Comparative Study on the Dynamic Response of Three Semisubmersible Floating Offshore Wind Turbines\",\"authors\":\"W. Shi, Lixian Zhang, Ning Dezhi, Zhiyu Jiang, C. Michailides, M. Karimirad\",\"doi\":\"10.1115/OMAE2019-96221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Currently, there is a great interest to globally develop offshore wind energy due to the greenhouse effect and energy crisis. Great efforts have been devoted to develop reliable floating offshore wind energy technology to exploit the wind energy resources in deep seas. This paper presents a comparative study of the dynamic response of three different semisubmersible floating wind turbine structures. All the three platforms support the same 5MW wind turbine. The platforms examined are: a V-shaped Semi, an OC4-DeepCwind Semi and a Braceless Semi at 200 m water depth. A dynamic analysis is carried out in order to calculate and compare the performance of these platforms. The comparison is made on the rigid body motions of the semisubmersible platform and tensions of the mooring lines. The presented comparison is based on statistical values and spectra of the time series of the examined response quantities. Coupling effects are more significant for the V-shaped Semi platform. The V-shaped Semi and the Braceless Semi show a more rational motion response under the investigated load cases. The results of this analysis may help to resolve the fundamental design tradeoffs between among different floating system concepts.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2019-96221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2019-96221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前,由于温室效应和能源危机,全球对开发海上风能有着极大的兴趣。为了开发深海风能资源,人们一直致力于开发可靠的海上浮动风能技术。本文对三种不同半潜式浮式风力机结构的动力响应进行了对比研究。这三个平台都支持相同的5MW风力涡轮机。测试平台包括:一个v形半平台,一个OC4-DeepCwind半平台和一个200米水深的Braceless半平台。为了计算和比较这些平台的性能,进行了动态分析。对半潜式平台的刚体运动和系泊索的张力进行了比较。所提出的比较是基于所检查的响应量的时间序列的统计值和谱。对于v型半平台,耦合效应更为显著。在所研究的荷载工况下,v型半挂车和无支架半挂车表现出更为合理的运动响应。分析的结果可能有助于解决不同浮动系统概念之间的基本设计权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study on the Dynamic Response of Three Semisubmersible Floating Offshore Wind Turbines
Currently, there is a great interest to globally develop offshore wind energy due to the greenhouse effect and energy crisis. Great efforts have been devoted to develop reliable floating offshore wind energy technology to exploit the wind energy resources in deep seas. This paper presents a comparative study of the dynamic response of three different semisubmersible floating wind turbine structures. All the three platforms support the same 5MW wind turbine. The platforms examined are: a V-shaped Semi, an OC4-DeepCwind Semi and a Braceless Semi at 200 m water depth. A dynamic analysis is carried out in order to calculate and compare the performance of these platforms. The comparison is made on the rigid body motions of the semisubmersible platform and tensions of the mooring lines. The presented comparison is based on statistical values and spectra of the time series of the examined response quantities. Coupling effects are more significant for the V-shaped Semi platform. The V-shaped Semi and the Braceless Semi show a more rational motion response under the investigated load cases. The results of this analysis may help to resolve the fundamental design tradeoffs between among different floating system concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FIV Energy Harvesting From Sharp-Edge Oscillators On Design and Analysis of a Drivetrain Test Rig for Wind Turbine Health Monitoring The Influence of Tidal Unsteadiness on a Tidal Turbine Blade Flow-Induced Vibration Learning a Predictionless Resonating Controller for Wave Energy Converters Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1