天然气直喷发动机热表面点火系统的评价

G. McTaggart-Cowan, Jian Huang, Marco Turcios, Ashish Singh, S. Munshi
{"title":"天然气直喷发动机热表面点火系统的评价","authors":"G. McTaggart-Cowan, Jian Huang, Marco Turcios, Ashish Singh, S. Munshi","doi":"10.1115/ICEF2018-9734","DOIUrl":null,"url":null,"abstract":"Non-premixed combustion of directly-injected natural gas offers diesel-like performance and efficiency with lower fuel costs and reduced greenhouse gas emissions. To ignite the fuel, a separate ignition source is needed. This work reports on the initial development of a new hot-surface based ignitor, where a small quantity of natural gas is injected and ignited by a hot element. This generates a robust pilot flame to ignite the main gas injection. A series of experimental tests were conducted to evaluate the sensitivity of the pilot flame formation process to hot surface temperature and geometry and to gas pilot injection geometry. Tests were conducted in a constant-volume combustion chamber at up to 6 bar with hot surface temperatures up to 1750 K. Reacting-flow computational fluid dynamics (CFD) evaluation is used to help interpret the results and to extrapolate to engine-relevant pressures. The results show that hot surface temperatures around 1500 K can minimize the pilot ignition time. An injector geometry where the pilot gas jets are angled such that they impinge on the hot surface but retain sufficient momentum to convect mass into the main chamber helps to ensure rapid and stable ignition. The CFD results indicate that, at engine pressures, a stable gas pilot flame could be established within 1–2 ms using the proposed injector geometry. These results will be used to underpin further development activities on this concept.","PeriodicalId":441369,"journal":{"name":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of a Hot-Surface Ignition System for a Direct-Injection of Natural Gas Engine\",\"authors\":\"G. McTaggart-Cowan, Jian Huang, Marco Turcios, Ashish Singh, S. Munshi\",\"doi\":\"10.1115/ICEF2018-9734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-premixed combustion of directly-injected natural gas offers diesel-like performance and efficiency with lower fuel costs and reduced greenhouse gas emissions. To ignite the fuel, a separate ignition source is needed. This work reports on the initial development of a new hot-surface based ignitor, where a small quantity of natural gas is injected and ignited by a hot element. This generates a robust pilot flame to ignite the main gas injection. A series of experimental tests were conducted to evaluate the sensitivity of the pilot flame formation process to hot surface temperature and geometry and to gas pilot injection geometry. Tests were conducted in a constant-volume combustion chamber at up to 6 bar with hot surface temperatures up to 1750 K. Reacting-flow computational fluid dynamics (CFD) evaluation is used to help interpret the results and to extrapolate to engine-relevant pressures. The results show that hot surface temperatures around 1500 K can minimize the pilot ignition time. An injector geometry where the pilot gas jets are angled such that they impinge on the hot surface but retain sufficient momentum to convect mass into the main chamber helps to ensure rapid and stable ignition. The CFD results indicate that, at engine pressures, a stable gas pilot flame could be established within 1–2 ms using the proposed injector geometry. These results will be used to underpin further development activities on this concept.\",\"PeriodicalId\":441369,\"journal\":{\"name\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICEF2018-9734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

直接喷射天然气的非预混燃烧提供了类似柴油的性能和效率,同时降低了燃料成本,减少了温室气体排放。为了点燃燃料,需要一个单独的点火源。这项工作报告了一种新的基于热表面的点火器的初步发展,在这种点火器中,少量的天然气被注入并被热元件点燃。这产生了一个强大的先导火焰点燃主气体喷射。进行了一系列实验测试,以评估先导火焰形成过程对热表面温度和几何形状以及气体先导喷射几何形状的敏感性。测试在恒定体积的燃烧室中进行,温度高达6巴,热表面温度高达1750 K。反应流动计算流体动力学(CFD)评估用于帮助解释结果并推断与发动机相关的压力。结果表明,1500 K左右的热表面温度可以最大限度地缩短引燃时间。喷油器的几何形状使先导气体喷射成一定角度撞击热表面,但仍保持足够的动量将质量传递到主室,这有助于确保快速稳定的点火。CFD结果表明,在发动机压力下,使用所提出的喷油器几何形状可以在1-2 ms内建立稳定的气体先导火焰。这些结果将用于支持这一概念的进一步发展活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of a Hot-Surface Ignition System for a Direct-Injection of Natural Gas Engine
Non-premixed combustion of directly-injected natural gas offers diesel-like performance and efficiency with lower fuel costs and reduced greenhouse gas emissions. To ignite the fuel, a separate ignition source is needed. This work reports on the initial development of a new hot-surface based ignitor, where a small quantity of natural gas is injected and ignited by a hot element. This generates a robust pilot flame to ignite the main gas injection. A series of experimental tests were conducted to evaluate the sensitivity of the pilot flame formation process to hot surface temperature and geometry and to gas pilot injection geometry. Tests were conducted in a constant-volume combustion chamber at up to 6 bar with hot surface temperatures up to 1750 K. Reacting-flow computational fluid dynamics (CFD) evaluation is used to help interpret the results and to extrapolate to engine-relevant pressures. The results show that hot surface temperatures around 1500 K can minimize the pilot ignition time. An injector geometry where the pilot gas jets are angled such that they impinge on the hot surface but retain sufficient momentum to convect mass into the main chamber helps to ensure rapid and stable ignition. The CFD results indicate that, at engine pressures, a stable gas pilot flame could be established within 1–2 ms using the proposed injector geometry. These results will be used to underpin further development activities on this concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GTL Kerosene and N-Butanol in RCCI Mode: Combustion and Emissions Investigation Emission and Combustion Characteristics of Diesel Engine Fumigated With Ammonia Effects of Outlier Flow Field on the Characteristics of In-Cylinder Coherent Structures Identified by POD-Based Conditional Averaging and Quadruple POD CI Engine Model Predictive Control With Availability Destruction Minimization Investigation of the Impact of Adding Titanium Dioxide to Jojoba Biodiesel-Diesel-N-Hexane Mixture on the Performance and Emission Characteristics of a Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1