基于目标的随机森林分类——基于高分二号和Landsat-8 OLI融合数据的地膜覆盖检测

Chuan Wang, Lizhen Lu
{"title":"基于目标的随机森林分类——基于高分二号和Landsat-8 OLI融合数据的地膜覆盖检测","authors":"Chuan Wang, Lizhen Lu","doi":"10.1109/Agro-Geoinformatics.2019.8820632","DOIUrl":null,"url":null,"abstract":"Plastic-mulched landcover (PML) is an important type of agricultural landscape and remote sensing is an effective way for monitoring and mapping PML. Based on Gaofen-2 (GF-2) and Landsat-8 operational land imager (OLI) fused data, this study applied an object-based random forest classification (OBRFC) method, which combines object-based image analysis (OBIA) technology with random forest (RF) model, to map PML. The method consists of the following steps: (1) image segmentation with a multiresolution segmentation (MRS) algorithm; (2) selection of sample objects (or segments) and 50 features of index, texture, and shape based on prior knowledge and relevant references; and (3) determination of two particularly important parameters, the number of decision trees-T and the feature number of split nodes -F, by comparing classification accuracy of a series of experiments. The results from applying the OBRFC method on the study area show: 1) the best overall accuracy (OA) of OBARFC reaches 91.73%; 2) by setting T to 50, OA curve presents a downward trend with the highest value of 91.72% at F =5; and 3) by setting F to 5, OA reaches its best value at T = 50.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Object-based random forest classification for detecting plastic-mulched landcover from Gaofen-2 and Landsat-8 OLI fused data\",\"authors\":\"Chuan Wang, Lizhen Lu\",\"doi\":\"10.1109/Agro-Geoinformatics.2019.8820632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic-mulched landcover (PML) is an important type of agricultural landscape and remote sensing is an effective way for monitoring and mapping PML. Based on Gaofen-2 (GF-2) and Landsat-8 operational land imager (OLI) fused data, this study applied an object-based random forest classification (OBRFC) method, which combines object-based image analysis (OBIA) technology with random forest (RF) model, to map PML. The method consists of the following steps: (1) image segmentation with a multiresolution segmentation (MRS) algorithm; (2) selection of sample objects (or segments) and 50 features of index, texture, and shape based on prior knowledge and relevant references; and (3) determination of two particularly important parameters, the number of decision trees-T and the feature number of split nodes -F, by comparing classification accuracy of a series of experiments. The results from applying the OBRFC method on the study area show: 1) the best overall accuracy (OA) of OBARFC reaches 91.73%; 2) by setting T to 50, OA curve presents a downward trend with the highest value of 91.72% at F =5; and 3) by setting F to 5, OA reaches its best value at T = 50.\",\"PeriodicalId\":143731,\"journal\":{\"name\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

地膜覆盖是一种重要的农业景观类型,遥感是地膜覆盖监测和制图的有效手段。基于高分2号(GF-2)和Landsat-8陆地成像仪(OLI)的融合数据,采用基于目标的随机森林分类(OBRFC)方法,将基于目标的图像分析(OBIA)技术与随机森林(RF)模型相结合,对PML进行地图绘制。该方法包括以下步骤:(1)采用多分辨率分割(MRS)算法对图像进行分割;(2)基于先验知识和相关参考,选取样本对象(或片段)和50个索引、纹理、形状特征;(3)通过比较一系列实验的分类准确率,确定两个特别重要的参数,即决策树的数目t和分裂节点的特征数目f。在研究区应用OBRFC方法的结果表明:1)OBARFC的最佳整体精度(OA)达到91.73%;2)设T = 50时,OA曲线呈下降趋势,在F =5时达到最高值91.72%;3)设F = 5, OA在T = 50时达到最佳值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object-based random forest classification for detecting plastic-mulched landcover from Gaofen-2 and Landsat-8 OLI fused data
Plastic-mulched landcover (PML) is an important type of agricultural landscape and remote sensing is an effective way for monitoring and mapping PML. Based on Gaofen-2 (GF-2) and Landsat-8 operational land imager (OLI) fused data, this study applied an object-based random forest classification (OBRFC) method, which combines object-based image analysis (OBIA) technology with random forest (RF) model, to map PML. The method consists of the following steps: (1) image segmentation with a multiresolution segmentation (MRS) algorithm; (2) selection of sample objects (or segments) and 50 features of index, texture, and shape based on prior knowledge and relevant references; and (3) determination of two particularly important parameters, the number of decision trees-T and the feature number of split nodes -F, by comparing classification accuracy of a series of experiments. The results from applying the OBRFC method on the study area show: 1) the best overall accuracy (OA) of OBARFC reaches 91.73%; 2) by setting T to 50, OA curve presents a downward trend with the highest value of 91.72% at F =5; and 3) by setting F to 5, OA reaches its best value at T = 50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving System of Rural Land Contractual Management Right Data using Multithreading and Distributed Storage Technology Winter Wheat Drought Monitoring with Multi-temporal MODIS data and AquaCrop Model—A Case Study in Henan Province Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems Research on Cotton Information Extraction Based on Sentinel-2 Time Series Analysis Impacts of El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the Olive Yield in the Mediterranean Region, Turkey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1