AndMFC: Android恶意软件家族分类框架

Sercan Türker, Ahmet Burak Can
{"title":"AndMFC: Android恶意软件家族分类框架","authors":"Sercan Türker, Ahmet Burak Can","doi":"10.1109/PIMRCW.2019.8880840","DOIUrl":null,"url":null,"abstract":"As the popularity of Android mobile operating system grows, the number of malicious software have increased extensively. Therefore, many research efforts have been done on Android malware analysis. Besides detection of malicious Android applications, recognizing families of malwares is also an important task in malware analysis. In this paper, we propose a machine learning-based classification framework that classifies Android malware samples into their families. The framework extracts requested permissions and API calls from Android malware samples and uses them as features to train a large set of machine learning classifiers. To validate the performance of our proposed approach, we use three different malware datasets. Our experimental results show that all of the tested models classify malwares efficiently. We also make a study of detecting unknown malwares that never seen before and we notice that our framework detects these malwares with a high accuracy.","PeriodicalId":158659,"journal":{"name":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"AndMFC: Android Malware Family Classification Framework\",\"authors\":\"Sercan Türker, Ahmet Burak Can\",\"doi\":\"10.1109/PIMRCW.2019.8880840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the popularity of Android mobile operating system grows, the number of malicious software have increased extensively. Therefore, many research efforts have been done on Android malware analysis. Besides detection of malicious Android applications, recognizing families of malwares is also an important task in malware analysis. In this paper, we propose a machine learning-based classification framework that classifies Android malware samples into their families. The framework extracts requested permissions and API calls from Android malware samples and uses them as features to train a large set of machine learning classifiers. To validate the performance of our proposed approach, we use three different malware datasets. Our experimental results show that all of the tested models classify malwares efficiently. We also make a study of detecting unknown malwares that never seen before and we notice that our framework detects these malwares with a high accuracy.\",\"PeriodicalId\":158659,\"journal\":{\"name\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRCW.2019.8880840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRCW.2019.8880840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

随着Android手机操作系统的普及,恶意软件的数量急剧增加。因此,人们对Android恶意软件的分析进行了大量的研究。除了检测恶意Android应用程序外,识别恶意软件家族也是恶意软件分析中的一项重要任务。在本文中,我们提出了一个基于机器学习的分类框架,将Android恶意软件样本分类到它们的家族中。该框架从Android恶意软件样本中提取请求的权限和API调用,并将其用作训练大量机器学习分类器的功能。为了验证我们提出的方法的性能,我们使用了三个不同的恶意软件数据集。实验结果表明,所有测试模型都能有效地对恶意软件进行分类。我们还研究了检测以前从未见过的未知恶意软件,我们注意到我们的框架检测这些恶意软件的准确率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AndMFC: Android Malware Family Classification Framework
As the popularity of Android mobile operating system grows, the number of malicious software have increased extensively. Therefore, many research efforts have been done on Android malware analysis. Besides detection of malicious Android applications, recognizing families of malwares is also an important task in malware analysis. In this paper, we propose a machine learning-based classification framework that classifies Android malware samples into their families. The framework extracts requested permissions and API calls from Android malware samples and uses them as features to train a large set of machine learning classifiers. To validate the performance of our proposed approach, we use three different malware datasets. Our experimental results show that all of the tested models classify malwares efficiently. We also make a study of detecting unknown malwares that never seen before and we notice that our framework detects these malwares with a high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Spatial Modulation in Highly Correlated Channels Cramer-Rao Lower Bounds for Magnetic Localization of a Wireless Capsule Endoscope based on the Magnetic Dipole Model Long Term Max-min Fairness Guarantee Mechanism: Adaptive Task Splitting and Resource Allocation in MEC-enabled Networks Energy Metamorphic Testing for Android Applications Full Duplex for Next Generation of 802.11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1