RLScheduler:一个使用强化学习的自动化HPC批处理作业调度程序

Di Zhang, Dong Dai, Youbiao He, F. S. Bao, Bing Xie
{"title":"RLScheduler:一个使用强化学习的自动化HPC批处理作业调度程序","authors":"Di Zhang, Dong Dai, Youbiao He, F. S. Bao, Bing Xie","doi":"10.1109/SC41405.2020.00035","DOIUrl":null,"url":null,"abstract":"Today’s high-performance computing (HPC) platforms are still dominated by batch jobs. Accordingly, effective batch job scheduling is crucial to obtain high system efficiency. Existing HPC batch job schedulers typically leverage heuristic priority functions to prioritize and schedule jobs. But, once configured and deployed by the experts, such priority functions can hardly adapt to the changes of job loads, optimization goals, or system settings, potentially leading to degraded system efficiency when changes occur. To address this fundamental issue, we present RLScheduler, an automated HPC batch job scheduler built on reinforcement learning. RLScheduler relies on minimal manual interventions or expert knowledge, but can learn high-quality scheduling policies via its own continuous ‘trial and error’. We introduce a new kernel-based neural network structure and trajectory filtering mechanism in RLScheduler to improve and stabilize the learning process. Through extensive evaluations, we confirm that RLScheduler can learn high-quality scheduling policies towards various workloads and various optimization goals with relatively low computation cost. Moreover, we show that the learned models perform stably even when applied to unseen workloads, making them practical for production use.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"RLScheduler: An Automated HPC Batch Job Scheduler Using Reinforcement Learning\",\"authors\":\"Di Zhang, Dong Dai, Youbiao He, F. S. Bao, Bing Xie\",\"doi\":\"10.1109/SC41405.2020.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s high-performance computing (HPC) platforms are still dominated by batch jobs. Accordingly, effective batch job scheduling is crucial to obtain high system efficiency. Existing HPC batch job schedulers typically leverage heuristic priority functions to prioritize and schedule jobs. But, once configured and deployed by the experts, such priority functions can hardly adapt to the changes of job loads, optimization goals, or system settings, potentially leading to degraded system efficiency when changes occur. To address this fundamental issue, we present RLScheduler, an automated HPC batch job scheduler built on reinforcement learning. RLScheduler relies on minimal manual interventions or expert knowledge, but can learn high-quality scheduling policies via its own continuous ‘trial and error’. We introduce a new kernel-based neural network structure and trajectory filtering mechanism in RLScheduler to improve and stabilize the learning process. Through extensive evaluations, we confirm that RLScheduler can learn high-quality scheduling policies towards various workloads and various optimization goals with relatively low computation cost. Moreover, we show that the learned models perform stably even when applied to unseen workloads, making them practical for production use.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

今天的高性能计算(HPC)平台仍然由批处理作业主导。因此,有效的批处理作业调度是提高系统效率的关键。现有的HPC批处理作业调度器通常利用启发式优先级函数对作业进行优先级排序和调度。但是,一旦由专家配置和部署,这些优先级函数很难适应作业负载、优化目标或系统设置的变化,当发生变化时可能导致系统效率下降。为了解决这个基本问题,我们提出了RLScheduler,一个基于强化学习的自动化HPC批处理作业调度器。RLScheduler依赖于最少的人工干预或专家知识,但可以通过自己不断的“试错”来学习高质量的调度策略。我们在RLScheduler中引入了一种新的基于核的神经网络结构和轨迹过滤机制,以改善和稳定学习过程。通过大量的评估,我们证实RLScheduler能够以相对较低的计算成本学习到针对各种工作负载和各种优化目标的高质量调度策略。此外,我们还展示了学习到的模型即使在应用于未见过的工作负载时也能稳定地执行,使它们对生产使用具有实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RLScheduler: An Automated HPC Batch Job Scheduler Using Reinforcement Learning
Today’s high-performance computing (HPC) platforms are still dominated by batch jobs. Accordingly, effective batch job scheduling is crucial to obtain high system efficiency. Existing HPC batch job schedulers typically leverage heuristic priority functions to prioritize and schedule jobs. But, once configured and deployed by the experts, such priority functions can hardly adapt to the changes of job loads, optimization goals, or system settings, potentially leading to degraded system efficiency when changes occur. To address this fundamental issue, we present RLScheduler, an automated HPC batch job scheduler built on reinforcement learning. RLScheduler relies on minimal manual interventions or expert knowledge, but can learn high-quality scheduling policies via its own continuous ‘trial and error’. We introduce a new kernel-based neural network structure and trajectory filtering mechanism in RLScheduler to improve and stabilize the learning process. Through extensive evaluations, we confirm that RLScheduler can learn high-quality scheduling policies towards various workloads and various optimization goals with relatively low computation cost. Moreover, we show that the learned models perform stably even when applied to unseen workloads, making them practical for production use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1