基于分区收缩阵列的大规模MIMO低延迟FPGA设计与实现

Ke Han, Dao-ben Li
{"title":"基于分区收缩阵列的大规模MIMO低延迟FPGA设计与实现","authors":"Ke Han, Dao-ben Li","doi":"10.1109/ICTA56932.2022.9963017","DOIUrl":null,"url":null,"abstract":"Large-scale matrix inversion is widely used in massive Multiple Input Multiple Output (MIMO) beamforming systems, but matrix inversion is very complicated in hardware implementation. In this paper, Hermitian matrix decomposition method based on partitioned systolic array is proposed, and the computing structure of the algorithm is improved flexibly by utilizing the partitioned characteristics of large-scale matrix. We compare our method with existing FPGA-based technologies on Xilinx ZCU102 FPGA. The results of the experiment show that our method has better performance than existing techniques in resource utilization, device delay and maximum working frequency when the size of Hermitian matrix is 32 × 32, which is a typical size for MIMO applications.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Latency FPGA Design and Implementation of Hermitian Matrix Inversion Based on Partitioned Systolic Array for Massive MIMO\",\"authors\":\"Ke Han, Dao-ben Li\",\"doi\":\"10.1109/ICTA56932.2022.9963017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale matrix inversion is widely used in massive Multiple Input Multiple Output (MIMO) beamforming systems, but matrix inversion is very complicated in hardware implementation. In this paper, Hermitian matrix decomposition method based on partitioned systolic array is proposed, and the computing structure of the algorithm is improved flexibly by utilizing the partitioned characteristics of large-scale matrix. We compare our method with existing FPGA-based technologies on Xilinx ZCU102 FPGA. The results of the experiment show that our method has better performance than existing techniques in resource utilization, device delay and maximum working frequency when the size of Hermitian matrix is 32 × 32, which is a typical size for MIMO applications.\",\"PeriodicalId\":325602,\"journal\":{\"name\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA56932.2022.9963017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模矩阵反演在大规模多输入多输出(MIMO)波束形成系统中得到了广泛的应用,但矩阵反演在硬件实现上非常复杂。本文提出了基于分区收缩阵列的厄米矩阵分解方法,利用大规模矩阵的分区特性,灵活改进了算法的计算结构。在Xilinx ZCU102 FPGA上,将该方法与现有基于FPGA的技术进行了比较。实验结果表明,当厄米矩阵的尺寸为32 × 32 (MIMO应用的典型尺寸)时,我们的方法在资源利用率、设备延迟和最大工作频率方面都优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Latency FPGA Design and Implementation of Hermitian Matrix Inversion Based on Partitioned Systolic Array for Massive MIMO
Large-scale matrix inversion is widely used in massive Multiple Input Multiple Output (MIMO) beamforming systems, but matrix inversion is very complicated in hardware implementation. In this paper, Hermitian matrix decomposition method based on partitioned systolic array is proposed, and the computing structure of the algorithm is improved flexibly by utilizing the partitioned characteristics of large-scale matrix. We compare our method with existing FPGA-based technologies on Xilinx ZCU102 FPGA. The results of the experiment show that our method has better performance than existing techniques in resource utilization, device delay and maximum working frequency when the size of Hermitian matrix is 32 × 32, which is a typical size for MIMO applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 4.2-to-5.6 GHz Transformer-Based PMOS-only Stacked-gm VCO in 28-nm CMOS A 0.58-pJ/bit 56-Gb/s PAM-4 Optical Receiver Frontend with an Envelope Tracker for Co-Packaged Optics in 40-nm CMOS CVD Monolayer tungsten-based PMOS Transistor with high performance at Vds = -1 V A 1000 fps Spiking Neural Network Tracking Algorithm for On-Chip Processing of Dynamic Vision Sensor Data Hardware Based RISC-V Instruction Set Randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1