{"title":"基于证据理论的土地利用和土地覆盖变化预测:以法国集约化农业区为例","authors":"L. Hubert‐Moy, S. Corgne, G. Mercier, B. Solaiman","doi":"10.1109/ICIF.2002.1021139","DOIUrl":null,"url":null,"abstract":"In intensive agricultural regions, accurate assessment of the spatial and temporal variation of winter vegetation covering is a key indicator of water transfer processes, essential for controlling land management and helping local decision making. Spatial prediction modeling of winter bare soils is complex and it is necessary to introduce uncertainty in modeling land use and cover changes, especially as high spatial and temporal variability are encountered. Dempster's fusion rule is used in the present study to spatially predict the location of winter bare fields for the next season on a watershed located in an intensive agricultural region. It expresses the model as a function of past-observed bare soils, field size, distance from farm buildings, agro-environmental action, and production quotas per ha. The model well predicted the presence of bare soils on 4/5 of the total area. The spatial distribution of misrepresented fields is a good indicator for identifying change factors.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Land use and land cover change prediction with the theory of evidence: a case study in an intensive agricultural region of France\",\"authors\":\"L. Hubert‐Moy, S. Corgne, G. Mercier, B. Solaiman\",\"doi\":\"10.1109/ICIF.2002.1021139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In intensive agricultural regions, accurate assessment of the spatial and temporal variation of winter vegetation covering is a key indicator of water transfer processes, essential for controlling land management and helping local decision making. Spatial prediction modeling of winter bare soils is complex and it is necessary to introduce uncertainty in modeling land use and cover changes, especially as high spatial and temporal variability are encountered. Dempster's fusion rule is used in the present study to spatially predict the location of winter bare fields for the next season on a watershed located in an intensive agricultural region. It expresses the model as a function of past-observed bare soils, field size, distance from farm buildings, agro-environmental action, and production quotas per ha. The model well predicted the presence of bare soils on 4/5 of the total area. The spatial distribution of misrepresented fields is a good indicator for identifying change factors.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Land use and land cover change prediction with the theory of evidence: a case study in an intensive agricultural region of France
In intensive agricultural regions, accurate assessment of the spatial and temporal variation of winter vegetation covering is a key indicator of water transfer processes, essential for controlling land management and helping local decision making. Spatial prediction modeling of winter bare soils is complex and it is necessary to introduce uncertainty in modeling land use and cover changes, especially as high spatial and temporal variability are encountered. Dempster's fusion rule is used in the present study to spatially predict the location of winter bare fields for the next season on a watershed located in an intensive agricultural region. It expresses the model as a function of past-observed bare soils, field size, distance from farm buildings, agro-environmental action, and production quotas per ha. The model well predicted the presence of bare soils on 4/5 of the total area. The spatial distribution of misrepresented fields is a good indicator for identifying change factors.