东海极端条件下OC3 Spar和OC4半潜式平台的数值模拟

Hyunkyoung Shin, Youngjae Yu, T. Pham, Junbae Kim, Rupesh Kumar
{"title":"东海极端条件下OC3 Spar和OC4半潜式平台的数值模拟","authors":"Hyunkyoung Shin, Youngjae Yu, T. Pham, Junbae Kim, Rupesh Kumar","doi":"10.1115/omae2019-95919","DOIUrl":null,"url":null,"abstract":"\n Since the Paris Conference of the parties in 2015, interest in renewable energy around the world is higher than ever. Korea also has plans to increase the proportion of renewable energy to 20% by 2030 through the renewable energy 3020 policy. Of these, 16.5GW is filled with wind power, the installation area is expanding from land to sea. Among them, some of big plans are using floating offshore wind turbines based on the marine environments in Korea. In this study, numerical simulations of the NREL 5MW wind turbine were performed using NREL FAST V.8. A comparison was made between two types of floaters, spar and semi-submersible, installed 58km off the Ulsan Coast with 150m water depth in the East Sea, Korea. The environmental data were obtained from the Meteorological Administration’s measured data and NASA’s reanalysis data, MERRA-2. Design Load Cases were selected by referring to IEC 61400-3. Maximum moments at both blade root and tower base, six-degrees of freedom motions and three mooring line tensions were compared.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulations of OC3 Spar and OC4 Semi-Submersible Type Platforms Under Extreme Conditions in the East Sea, Korea\",\"authors\":\"Hyunkyoung Shin, Youngjae Yu, T. Pham, Junbae Kim, Rupesh Kumar\",\"doi\":\"10.1115/omae2019-95919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Since the Paris Conference of the parties in 2015, interest in renewable energy around the world is higher than ever. Korea also has plans to increase the proportion of renewable energy to 20% by 2030 through the renewable energy 3020 policy. Of these, 16.5GW is filled with wind power, the installation area is expanding from land to sea. Among them, some of big plans are using floating offshore wind turbines based on the marine environments in Korea. In this study, numerical simulations of the NREL 5MW wind turbine were performed using NREL FAST V.8. A comparison was made between two types of floaters, spar and semi-submersible, installed 58km off the Ulsan Coast with 150m water depth in the East Sea, Korea. The environmental data were obtained from the Meteorological Administration’s measured data and NASA’s reanalysis data, MERRA-2. Design Load Cases were selected by referring to IEC 61400-3. Maximum moments at both blade root and tower base, six-degrees of freedom motions and three mooring line tensions were compared.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自2015年巴黎气候变化大会以来,世界各国对可再生能源的兴趣空前高涨。韩国也计划通过“可再生能源3020”政策,到2030年将可再生能源的比重提高到20%。其中,16.5吉瓦是风力发电,安装面积正在从陆地扩展到海洋。其中,以韩国海洋环境为基础,使用浮动式海上风力发电机的大型计划也不少。在本研究中,使用NREL FAST V.8对NREL 5MW风力机进行了数值模拟。在韩国东部海域蔚山海岸58公里处、水深150米的海面上安装的浮筒和半潜式浮筒进行了比较。环境数据来自美国气象局的测量数据和美国宇航局的MERRA-2再分析数据。设计负载案例的选择参照IEC 61400-3。比较了叶片根部和塔底的最大力矩、六自由度运动和三种系缆张力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulations of OC3 Spar and OC4 Semi-Submersible Type Platforms Under Extreme Conditions in the East Sea, Korea
Since the Paris Conference of the parties in 2015, interest in renewable energy around the world is higher than ever. Korea also has plans to increase the proportion of renewable energy to 20% by 2030 through the renewable energy 3020 policy. Of these, 16.5GW is filled with wind power, the installation area is expanding from land to sea. Among them, some of big plans are using floating offshore wind turbines based on the marine environments in Korea. In this study, numerical simulations of the NREL 5MW wind turbine were performed using NREL FAST V.8. A comparison was made between two types of floaters, spar and semi-submersible, installed 58km off the Ulsan Coast with 150m water depth in the East Sea, Korea. The environmental data were obtained from the Meteorological Administration’s measured data and NASA’s reanalysis data, MERRA-2. Design Load Cases were selected by referring to IEC 61400-3. Maximum moments at both blade root and tower base, six-degrees of freedom motions and three mooring line tensions were compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FIV Energy Harvesting From Sharp-Edge Oscillators On Design and Analysis of a Drivetrain Test Rig for Wind Turbine Health Monitoring The Influence of Tidal Unsteadiness on a Tidal Turbine Blade Flow-Induced Vibration Learning a Predictionless Resonating Controller for Wave Energy Converters Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1