基于乱序测量的多传感器多目标跟踪

M. Mallick, J. Krant, Y. Bar-Shalom
{"title":"基于乱序测量的多传感器多目标跟踪","authors":"M. Mallick, J. Krant, Y. Bar-Shalom","doi":"10.1109/ICIF.2002.1021142","DOIUrl":null,"url":null,"abstract":"Out-of-sequence measurements (OOSMS) arise in a multi-sensor central-tracking system due to communication network delays and varying preprocessing times at the sensor platforms. During the last few years a great deal of research has focussed attention on the OOSM filtering problem. However, research in the multi-sensor multi-target OOSM tracking involving data association, filtering, and hypothesis management is still lacking. Some previous efforts have used buffering and measurement reprocessing to handle the OOSMs. In this paper, we present single-model multiple-lag OOSM algorithms for data association, likelihood computation, and hypothesis management for a dwell-based multi-sensor multi-target multi-hypothesis tracking (MHT) system that handles missed detections and clutter. We present numerical results using simulated multi-sensor ground moving target indicator (GMTI) radar measurements.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Multi-sensor multi-target tracking using out-of-sequence measurements\",\"authors\":\"M. Mallick, J. Krant, Y. Bar-Shalom\",\"doi\":\"10.1109/ICIF.2002.1021142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Out-of-sequence measurements (OOSMS) arise in a multi-sensor central-tracking system due to communication network delays and varying preprocessing times at the sensor platforms. During the last few years a great deal of research has focussed attention on the OOSM filtering problem. However, research in the multi-sensor multi-target OOSM tracking involving data association, filtering, and hypothesis management is still lacking. Some previous efforts have used buffering and measurement reprocessing to handle the OOSMs. In this paper, we present single-model multiple-lag OOSM algorithms for data association, likelihood computation, and hypothesis management for a dwell-based multi-sensor multi-target multi-hypothesis tracking (MHT) system that handles missed detections and clutter. We present numerical results using simulated multi-sensor ground moving target indicator (GMTI) radar measurements.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在多传感器中央跟踪系统中,由于通信网络延迟和传感器平台预处理时间的变化,会出现乱序测量(OOSMS)。在过去的几年里,大量的研究集中在OOSM滤波问题上。然而,涉及数据关联、滤波和假设管理的多传感器多目标OOSM跟踪研究仍然缺乏。以前的一些工作使用缓冲和测量再处理来处理oosm。在本文中,我们提出了用于数据关联、似然计算和假设管理的单模型多滞后OOSM算法,用于处理遗漏检测和杂波的基于多传感器多目标多假设跟踪(MHT)系统。本文给出了模拟多传感器地面运动目标指示器(GMTI)雷达测量的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-sensor multi-target tracking using out-of-sequence measurements
Out-of-sequence measurements (OOSMS) arise in a multi-sensor central-tracking system due to communication network delays and varying preprocessing times at the sensor platforms. During the last few years a great deal of research has focussed attention on the OOSM filtering problem. However, research in the multi-sensor multi-target OOSM tracking involving data association, filtering, and hypothesis management is still lacking. Some previous efforts have used buffering and measurement reprocessing to handle the OOSMs. In this paper, we present single-model multiple-lag OOSM algorithms for data association, likelihood computation, and hypothesis management for a dwell-based multi-sensor multi-target multi-hypothesis tracking (MHT) system that handles missed detections and clutter. We present numerical results using simulated multi-sensor ground moving target indicator (GMTI) radar measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1