{"title":"基于自适应混合分布的MR脑图像分割","authors":"Juin-Der Lee, P. Cheng, M. Liou","doi":"10.1109/ICONIP.2002.1202163","DOIUrl":null,"url":null,"abstract":"The Box-Cox transformation is applied to fit a Gaussian mixture distribution to the brain image intensity data. The advantage of using such data-adaptive mixture model is evidenced by yielding better image segmentation results compared to the existing EM procedures using standard Gaussian mixture distribution.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MR brain image segmentation by adaptive mixture distribution\",\"authors\":\"Juin-Der Lee, P. Cheng, M. Liou\",\"doi\":\"10.1109/ICONIP.2002.1202163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Box-Cox transformation is applied to fit a Gaussian mixture distribution to the brain image intensity data. The advantage of using such data-adaptive mixture model is evidenced by yielding better image segmentation results compared to the existing EM procedures using standard Gaussian mixture distribution.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1202163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MR brain image segmentation by adaptive mixture distribution
The Box-Cox transformation is applied to fit a Gaussian mixture distribution to the brain image intensity data. The advantage of using such data-adaptive mixture model is evidenced by yielding better image segmentation results compared to the existing EM procedures using standard Gaussian mixture distribution.