用于微型投影仪的晶圆级真空封装双轴MEMS扫描镜

U. Hofmann, F. Senger, J. Janes, C. Mallas, V. Stenchly, T. von Wantoch, H. Quenzer, M. Weiss
{"title":"用于微型投影仪的晶圆级真空封装双轴MEMS扫描镜","authors":"U. Hofmann, F. Senger, J. Janes, C. Mallas, V. Stenchly, T. von Wantoch, H. Quenzer, M. Weiss","doi":"10.1117/12.2038249","DOIUrl":null,"url":null,"abstract":"Hermetic wafer level packaging of optical MEMS scanning mirrors is essential for mass-market applications. It is the key to enable reliable low-cost mass producible scanning solutions. Vacuum packaging of resonant MEMS scanning mirrors widens the parameter range specifically with respect to scan angle and scan frequency. It also allows extending the utilizable range of mirror aperture size based on the fact that the energy of the high-Q oscillator can be effectively conserved and accumulated. But there are also some drawbacks associated with vacuum packaging. This paper discusses the different advantageous and disadvantageous aspects of vacuum packaging of MEMS scanning mirrors with respect to laser projection displays. Improved MEMS scanning mirror designs are being presented which focus on overcoming previous limitations. Finally an outlook is presented on the suitability of this technology for very large aperture scanning mirrors to be used in high power laser applications.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Wafer-level vacuum-packaged two-axis MEMS scanning mirror for pico-projector application\",\"authors\":\"U. Hofmann, F. Senger, J. Janes, C. Mallas, V. Stenchly, T. von Wantoch, H. Quenzer, M. Weiss\",\"doi\":\"10.1117/12.2038249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hermetic wafer level packaging of optical MEMS scanning mirrors is essential for mass-market applications. It is the key to enable reliable low-cost mass producible scanning solutions. Vacuum packaging of resonant MEMS scanning mirrors widens the parameter range specifically with respect to scan angle and scan frequency. It also allows extending the utilizable range of mirror aperture size based on the fact that the energy of the high-Q oscillator can be effectively conserved and accumulated. But there are also some drawbacks associated with vacuum packaging. This paper discusses the different advantageous and disadvantageous aspects of vacuum packaging of MEMS scanning mirrors with respect to laser projection displays. Improved MEMS scanning mirror designs are being presented which focus on overcoming previous limitations. Finally an outlook is presented on the suitability of this technology for very large aperture scanning mirrors to be used in high power laser applications.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2038249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2038249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

光学MEMS扫描镜的密封晶圆级封装对于大众市场应用至关重要。这是实现可靠、低成本、大批量生产的扫描解决方案的关键。谐振式MEMS扫描镜的真空封装特别拓宽了扫描角度和扫描频率的参数范围。由于高q振荡器的能量可以有效地守恒和积累,因此可以扩大反射镜孔径尺寸的利用范围。但是真空包装也有一些缺点。本文针对激光投影显示器,讨论了MEMS扫描镜真空封装的不同优缺点。改进的微机电系统扫描镜设计的重点是克服以往的局限性。最后展望了该技术在大功率激光大孔径扫描镜应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wafer-level vacuum-packaged two-axis MEMS scanning mirror for pico-projector application
Hermetic wafer level packaging of optical MEMS scanning mirrors is essential for mass-market applications. It is the key to enable reliable low-cost mass producible scanning solutions. Vacuum packaging of resonant MEMS scanning mirrors widens the parameter range specifically with respect to scan angle and scan frequency. It also allows extending the utilizable range of mirror aperture size based on the fact that the energy of the high-Q oscillator can be effectively conserved and accumulated. But there are also some drawbacks associated with vacuum packaging. This paper discusses the different advantageous and disadvantageous aspects of vacuum packaging of MEMS scanning mirrors with respect to laser projection displays. Improved MEMS scanning mirror designs are being presented which focus on overcoming previous limitations. Finally an outlook is presented on the suitability of this technology for very large aperture scanning mirrors to be used in high power laser applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical cantilever device for displacement sensing and variable attenuator Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments Integration of real-time 3D image acquisition and multiview 3D display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1