非线性动力系统的神经模糊遗传智能控制

P. Melin, O. Castillo
{"title":"非线性动力系统的神经模糊遗传智能控制","authors":"P. Melin, O. Castillo","doi":"10.1109/IJCNN.2001.939073","DOIUrl":null,"url":null,"abstract":"We describe different hybrid intelligent approaches for controlling nonlinear dynamical systems in manufacturing applications. The hybrid approaches combine soft computing techniques and mathematical models to achieve the goal of controlling the manufacturing process to follow a desired production plan. We develop several hybrid architectures that combine fuzzy logic, neural networks, and genetic algorithms, to compare the performance of each of these combinations and decide on the best one for our purpose. We consider the case of controlling nonlinear electrochemical processes to test our hybrid approach for control. Electrochemical processes, like the ones used in battery formation, are very complex and for this reason very difficult to control. We have achieved very good results using fuzzy logic for control, neural networks for modelling the process, and genetic algorithms for tuning the hybrid intelligent system.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent control of nonlinear dynamical systems with a neuro-fuzzy-genetic approach\",\"authors\":\"P. Melin, O. Castillo\",\"doi\":\"10.1109/IJCNN.2001.939073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe different hybrid intelligent approaches for controlling nonlinear dynamical systems in manufacturing applications. The hybrid approaches combine soft computing techniques and mathematical models to achieve the goal of controlling the manufacturing process to follow a desired production plan. We develop several hybrid architectures that combine fuzzy logic, neural networks, and genetic algorithms, to compare the performance of each of these combinations and decide on the best one for our purpose. We consider the case of controlling nonlinear electrochemical processes to test our hybrid approach for control. Electrochemical processes, like the ones used in battery formation, are very complex and for this reason very difficult to control. We have achieved very good results using fuzzy logic for control, neural networks for modelling the process, and genetic algorithms for tuning the hybrid intelligent system.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们描述了制造应用中控制非线性动力系统的不同混合智能方法。该方法将软计算技术与数学模型相结合,以达到控制制造过程遵循预期生产计划的目的。我们开发了几种混合架构,结合了模糊逻辑、神经网络和遗传算法,以比较每种组合的性能,并决定最适合我们目的的组合。我们以控制非线性电化学过程为例来测试我们的混合控制方法。电化学过程,就像电池形成过程一样,非常复杂,因此很难控制。我们使用模糊逻辑进行控制,神经网络进行过程建模,遗传算法进行混合智能系统的调整,取得了非常好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent control of nonlinear dynamical systems with a neuro-fuzzy-genetic approach
We describe different hybrid intelligent approaches for controlling nonlinear dynamical systems in manufacturing applications. The hybrid approaches combine soft computing techniques and mathematical models to achieve the goal of controlling the manufacturing process to follow a desired production plan. We develop several hybrid architectures that combine fuzzy logic, neural networks, and genetic algorithms, to compare the performance of each of these combinations and decide on the best one for our purpose. We consider the case of controlling nonlinear electrochemical processes to test our hybrid approach for control. Electrochemical processes, like the ones used in battery formation, are very complex and for this reason very difficult to control. We have achieved very good results using fuzzy logic for control, neural networks for modelling the process, and genetic algorithms for tuning the hybrid intelligent system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1