基于信道化220- 335ghz信号和集成波导耦合器的130nm BiCMOS 105Gb/s介电波导链路

J. Holloway, G. Dogiamis, R. Han
{"title":"基于信道化220- 335ghz信号和集成波导耦合器的130nm BiCMOS 105Gb/s介电波导链路","authors":"J. Holloway, G. Dogiamis, R. Han","doi":"10.1109/ISSCC42613.2021.9365857","DOIUrl":null,"url":null,"abstract":"The rapid surge of data transmission within computation, storage and communication infrastructures is pushing the speed boundary of traditional copper-based electrical links. Recent realizations of l00Gb/s wired links require advanced FinFET technologies, highcost packaging/cables and power-consuming equalization. High-frequency waves over dielectric waveguides have been considered as an alternative solution that exploits the low-loss, broadband medium while maintaining compatibility with existing silicon 1C platforms. However, since its debut in 2011 [1], this scheme, previously using $\\leq 140\\mathrm{G}\\mathrm{H}\\mathrm{z}$ carriers, has only achieved data rates of up to 36Gb/s[2]. lt is expected that higher carrier frequencies (e.g. >200GHz) and multi-channel aggregation would further increase the data rate while shrinking the interconnect size; but that scheme has been hindered by challenges related to the required high-order multiplexer and ultra-broadband waveguide coupler operating efficiently at sub terahertz (sub-THz) frequencies. in this paper, using a 130nmSiGe BiCMOS technology, we present a multi-channel, multiplexer/coupler-integrated transmitter (Tx) that delivers a data rate of $105\\mathrm{G}\\mathrm{b}/\\mathrm{s}(3\\times 35\\mathrm{G}\\mathrm{b}/\\mathrm{s})$. To demodulate each channel, a 35Gb/s coupler-integrated receiver (Rx) is also developed. Ourlink, including the chipset and a 0. 4mm-wide, 30cm-long dielectric ribbon, experimentally demonstrates the potential speed, efficiency, size and cost advantages of THz fiber links in high-speed inter-server and backplane fabrics.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A 105Gb/s Dielectric-Waveguide Link in 130nm BiCMOS Using Channelized 220-to-335GHz Signal and Integrated Waveguide Coupler\",\"authors\":\"J. Holloway, G. Dogiamis, R. Han\",\"doi\":\"10.1109/ISSCC42613.2021.9365857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid surge of data transmission within computation, storage and communication infrastructures is pushing the speed boundary of traditional copper-based electrical links. Recent realizations of l00Gb/s wired links require advanced FinFET technologies, highcost packaging/cables and power-consuming equalization. High-frequency waves over dielectric waveguides have been considered as an alternative solution that exploits the low-loss, broadband medium while maintaining compatibility with existing silicon 1C platforms. However, since its debut in 2011 [1], this scheme, previously using $\\\\leq 140\\\\mathrm{G}\\\\mathrm{H}\\\\mathrm{z}$ carriers, has only achieved data rates of up to 36Gb/s[2]. lt is expected that higher carrier frequencies (e.g. >200GHz) and multi-channel aggregation would further increase the data rate while shrinking the interconnect size; but that scheme has been hindered by challenges related to the required high-order multiplexer and ultra-broadband waveguide coupler operating efficiently at sub terahertz (sub-THz) frequencies. in this paper, using a 130nmSiGe BiCMOS technology, we present a multi-channel, multiplexer/coupler-integrated transmitter (Tx) that delivers a data rate of $105\\\\mathrm{G}\\\\mathrm{b}/\\\\mathrm{s}(3\\\\times 35\\\\mathrm{G}\\\\mathrm{b}/\\\\mathrm{s})$. To demodulate each channel, a 35Gb/s coupler-integrated receiver (Rx) is also developed. Ourlink, including the chipset and a 0. 4mm-wide, 30cm-long dielectric ribbon, experimentally demonstrates the potential speed, efficiency, size and cost advantages of THz fiber links in high-speed inter-server and backplane fabrics.\",\"PeriodicalId\":371093,\"journal\":{\"name\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42613.2021.9365857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

计算、存储和通信基础设施中数据传输的快速激增正在推动传统铜基电子链路的速度边界。最近实现的l00Gb/s有线链路需要先进的FinFET技术、高成本封装/电缆和功耗均衡。介质波导上的高频波被认为是一种替代解决方案,可以利用低损耗、宽带介质,同时保持与现有硅1C平台的兼容性。然而,自2011年首次亮相以来[1],该方案之前使用$\leq 140\mathrm{G}\mathrm{H}\mathrm{z}$载波,仅实现了高达36Gb/s的数据速率[2]。预计更高的载波频率(例如>200GHz)和多通道聚合将进一步提高数据速率,同时缩小互连尺寸;但该方案一直受到相关挑战的阻碍,这些挑战涉及所需的高阶多路复用器和在亚太赫兹(sub- thz)频率下高效工作的超宽带波导耦合器。在本文中,我们采用130nmSiGe BiCMOS技术,提出了一种多通道、多路复用器/耦合器集成的发射机(Tx),其传输速率为$105\mathrm{G}\mathrm{b}/\mathrm{s}(3\times 35\mathrm{G}\mathrm{b}/\mathrm{s})$。为了解调每个通道,还开发了35Gb/s耦合器集成接收机(Rx)。我们的链接,包括芯片组和0。4毫米宽,30厘米长的介电带,实验证明了高速服务器间和背板结构中太赫兹光纤链路的潜在速度,效率,尺寸和成本优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 105Gb/s Dielectric-Waveguide Link in 130nm BiCMOS Using Channelized 220-to-335GHz Signal and Integrated Waveguide Coupler
The rapid surge of data transmission within computation, storage and communication infrastructures is pushing the speed boundary of traditional copper-based electrical links. Recent realizations of l00Gb/s wired links require advanced FinFET technologies, highcost packaging/cables and power-consuming equalization. High-frequency waves over dielectric waveguides have been considered as an alternative solution that exploits the low-loss, broadband medium while maintaining compatibility with existing silicon 1C platforms. However, since its debut in 2011 [1], this scheme, previously using $\leq 140\mathrm{G}\mathrm{H}\mathrm{z}$ carriers, has only achieved data rates of up to 36Gb/s[2]. lt is expected that higher carrier frequencies (e.g. >200GHz) and multi-channel aggregation would further increase the data rate while shrinking the interconnect size; but that scheme has been hindered by challenges related to the required high-order multiplexer and ultra-broadband waveguide coupler operating efficiently at sub terahertz (sub-THz) frequencies. in this paper, using a 130nmSiGe BiCMOS technology, we present a multi-channel, multiplexer/coupler-integrated transmitter (Tx) that delivers a data rate of $105\mathrm{G}\mathrm{b}/\mathrm{s}(3\times 35\mathrm{G}\mathrm{b}/\mathrm{s})$. To demodulate each channel, a 35Gb/s coupler-integrated receiver (Rx) is also developed. Ourlink, including the chipset and a 0. 4mm-wide, 30cm-long dielectric ribbon, experimentally demonstrates the potential speed, efficiency, size and cost advantages of THz fiber links in high-speed inter-server and backplane fabrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET A 0.021mm2 PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FDSOI Technology 8.1 A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS 14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver ISSCC 2021 Index to Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1