用于集成CMOS的过度生长Si/SiGe谐振带间隧道二极管

S. Sudirgo, R. Vega, R. P. Nandgaonkar, K. Hirschman, S. Rommel, S. Kurinec, P. Thompson, Niu Jin, P. R. Berger
{"title":"用于集成CMOS的过度生长Si/SiGe谐振带间隧道二极管","authors":"S. Sudirgo, R. Vega, R. P. Nandgaonkar, K. Hirschman, S. Rommel, S. Kurinec, P. Thompson, Niu Jin, P. R. Berger","doi":"10.1109/DRC.2004.1367807","DOIUrl":null,"url":null,"abstract":"The incorporation of tunnel diodes with field effect transistors (FET) can improve the speed and power capability in electronic circuitry. This has been realized in III-V materials by demonstrating a low power refresh-free tunneling-SRAM and high performance compact A/D converter. A new thrust to integrate tunnel diodes with the mainstream CMOS technology led to the invention of Si/SiGe resonant interband tunnel diode (RITD) (S.L. Rommel et al., Appl. Phys. Lett., vol. 73, pp. 2191-93, 1998) with the highest reported peak-to-valley current ratio (PVCR) of 6.0 (K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001). The structure consists of a SiGe spacer i-layer sandwiched between two delta-doped planes grown by low-thermal molecular beam epitaxy (LT-MBE) (N. Jin et al., IEEE Trans. Elec. Dev., vol. 50, pp. 1876-1884, 2003). By adjusting the spacer layer thickness, the peak current density (Jp) can be adjusted from 0.1 A/cm/sup 2/ up to 151 kA/cm/sup 2/ (N. Jin et al., App. Phys. Lett., 83, pp. 3308-3310, 2003). Recently, monolithic integration of RITD with CMOS has been realized, demonstrating a low-voltage operation of a monostable-bistable logic element (MOBILE) (S.Sudirgo et al., Proc. 2003 Int. Semic. Dev. Res. Symp., pp. 22, 2003). In this study, RITD layers were grown through openings in a 300 nm thick chemical vapor deposition (CVD) SiO/sub 2/ layer.","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Overgrown Si/SiGe resonant interband tunnel diodes for integration with CMOS\",\"authors\":\"S. Sudirgo, R. Vega, R. P. Nandgaonkar, K. Hirschman, S. Rommel, S. Kurinec, P. Thompson, Niu Jin, P. R. Berger\",\"doi\":\"10.1109/DRC.2004.1367807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incorporation of tunnel diodes with field effect transistors (FET) can improve the speed and power capability in electronic circuitry. This has been realized in III-V materials by demonstrating a low power refresh-free tunneling-SRAM and high performance compact A/D converter. A new thrust to integrate tunnel diodes with the mainstream CMOS technology led to the invention of Si/SiGe resonant interband tunnel diode (RITD) (S.L. Rommel et al., Appl. Phys. Lett., vol. 73, pp. 2191-93, 1998) with the highest reported peak-to-valley current ratio (PVCR) of 6.0 (K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001). The structure consists of a SiGe spacer i-layer sandwiched between two delta-doped planes grown by low-thermal molecular beam epitaxy (LT-MBE) (N. Jin et al., IEEE Trans. Elec. Dev., vol. 50, pp. 1876-1884, 2003). By adjusting the spacer layer thickness, the peak current density (Jp) can be adjusted from 0.1 A/cm/sup 2/ up to 151 kA/cm/sup 2/ (N. Jin et al., App. Phys. Lett., 83, pp. 3308-3310, 2003). Recently, monolithic integration of RITD with CMOS has been realized, demonstrating a low-voltage operation of a monostable-bistable logic element (MOBILE) (S.Sudirgo et al., Proc. 2003 Int. Semic. Dev. Res. Symp., pp. 22, 2003). In this study, RITD layers were grown through openings in a 300 nm thick chemical vapor deposition (CVD) SiO/sub 2/ layer.\",\"PeriodicalId\":385948,\"journal\":{\"name\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2004.1367807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

隧道二极管与场效应晶体管(FET)的结合可以提高电子电路的速度和功率能力。通过展示低功耗无刷新隧道sram和高性能紧凑型a /D转换器,在III-V材料中实现了这一点。将隧道二极管与主流CMOS技术集成的新推力导致了Si/SiGe谐振带间隧道二极管(RITD)的发明(S.L. Rommel et al., apple)。理论物理。列托人。(K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001),最高峰谷电流比(PVCR)为6.0。该结构由夹在两个由低热分子束外延(LT-MBE)生长的δ掺杂平面之间的SiGe间隔层组成(N. Jin等,IEEE Trans.)。《编》,第50卷,第1876—1884页,2003年)。通过调整间隔层厚度,峰值电流密度(Jp)可以从0.1 A/cm/sup 2/调节到151 kA/cm/sup 2/ (N. Jin et al., App. Phys.)。列托人。, 83, pp. 3308-3310, 2003)。最近,RITD与CMOS的单片集成已经实现,展示了单稳-双稳逻辑元件(MOBILE)的低压操作(S.Sudirgo et al., Proc. 2003 Int.)。Semic。Dev. Res. Symp,第22页,2003)。在这项研究中,RITD层通过300 nm厚的化学气相沉积(CVD) SiO/sub 2/层的开孔生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overgrown Si/SiGe resonant interband tunnel diodes for integration with CMOS
The incorporation of tunnel diodes with field effect transistors (FET) can improve the speed and power capability in electronic circuitry. This has been realized in III-V materials by demonstrating a low power refresh-free tunneling-SRAM and high performance compact A/D converter. A new thrust to integrate tunnel diodes with the mainstream CMOS technology led to the invention of Si/SiGe resonant interband tunnel diode (RITD) (S.L. Rommel et al., Appl. Phys. Lett., vol. 73, pp. 2191-93, 1998) with the highest reported peak-to-valley current ratio (PVCR) of 6.0 (K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001). The structure consists of a SiGe spacer i-layer sandwiched between two delta-doped planes grown by low-thermal molecular beam epitaxy (LT-MBE) (N. Jin et al., IEEE Trans. Elec. Dev., vol. 50, pp. 1876-1884, 2003). By adjusting the spacer layer thickness, the peak current density (Jp) can be adjusted from 0.1 A/cm/sup 2/ up to 151 kA/cm/sup 2/ (N. Jin et al., App. Phys. Lett., 83, pp. 3308-3310, 2003). Recently, monolithic integration of RITD with CMOS has been realized, demonstrating a low-voltage operation of a monostable-bistable logic element (MOBILE) (S.Sudirgo et al., Proc. 2003 Int. Semic. Dev. Res. Symp., pp. 22, 2003). In this study, RITD layers were grown through openings in a 300 nm thick chemical vapor deposition (CVD) SiO/sub 2/ layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Complex band structure-based non-equilibrium Green's function (NEGF) transport studies for ultra-scaled carbon nanotube (CNT) transistors [CNTFETs] Nano-scale MOSFETs with programmable virtual source/drain High power AlGaN/GaN heterojunction FETs for base station applications Physical limits on binary logic switch scaling Directly lithographic top contacts for pentacene organic thin-film transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1