S. Sudirgo, R. Vega, R. P. Nandgaonkar, K. Hirschman, S. Rommel, S. Kurinec, P. Thompson, Niu Jin, P. R. Berger
{"title":"用于集成CMOS的过度生长Si/SiGe谐振带间隧道二极管","authors":"S. Sudirgo, R. Vega, R. P. Nandgaonkar, K. Hirschman, S. Rommel, S. Kurinec, P. Thompson, Niu Jin, P. R. Berger","doi":"10.1109/DRC.2004.1367807","DOIUrl":null,"url":null,"abstract":"The incorporation of tunnel diodes with field effect transistors (FET) can improve the speed and power capability in electronic circuitry. This has been realized in III-V materials by demonstrating a low power refresh-free tunneling-SRAM and high performance compact A/D converter. A new thrust to integrate tunnel diodes with the mainstream CMOS technology led to the invention of Si/SiGe resonant interband tunnel diode (RITD) (S.L. Rommel et al., Appl. Phys. Lett., vol. 73, pp. 2191-93, 1998) with the highest reported peak-to-valley current ratio (PVCR) of 6.0 (K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001). The structure consists of a SiGe spacer i-layer sandwiched between two delta-doped planes grown by low-thermal molecular beam epitaxy (LT-MBE) (N. Jin et al., IEEE Trans. Elec. Dev., vol. 50, pp. 1876-1884, 2003). By adjusting the spacer layer thickness, the peak current density (Jp) can be adjusted from 0.1 A/cm/sup 2/ up to 151 kA/cm/sup 2/ (N. Jin et al., App. Phys. Lett., 83, pp. 3308-3310, 2003). Recently, monolithic integration of RITD with CMOS has been realized, demonstrating a low-voltage operation of a monostable-bistable logic element (MOBILE) (S.Sudirgo et al., Proc. 2003 Int. Semic. Dev. Res. Symp., pp. 22, 2003). In this study, RITD layers were grown through openings in a 300 nm thick chemical vapor deposition (CVD) SiO/sub 2/ layer.","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Overgrown Si/SiGe resonant interband tunnel diodes for integration with CMOS\",\"authors\":\"S. Sudirgo, R. Vega, R. P. Nandgaonkar, K. Hirschman, S. Rommel, S. Kurinec, P. Thompson, Niu Jin, P. R. Berger\",\"doi\":\"10.1109/DRC.2004.1367807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incorporation of tunnel diodes with field effect transistors (FET) can improve the speed and power capability in electronic circuitry. This has been realized in III-V materials by demonstrating a low power refresh-free tunneling-SRAM and high performance compact A/D converter. A new thrust to integrate tunnel diodes with the mainstream CMOS technology led to the invention of Si/SiGe resonant interband tunnel diode (RITD) (S.L. Rommel et al., Appl. Phys. Lett., vol. 73, pp. 2191-93, 1998) with the highest reported peak-to-valley current ratio (PVCR) of 6.0 (K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001). The structure consists of a SiGe spacer i-layer sandwiched between two delta-doped planes grown by low-thermal molecular beam epitaxy (LT-MBE) (N. Jin et al., IEEE Trans. Elec. Dev., vol. 50, pp. 1876-1884, 2003). By adjusting the spacer layer thickness, the peak current density (Jp) can be adjusted from 0.1 A/cm/sup 2/ up to 151 kA/cm/sup 2/ (N. Jin et al., App. Phys. Lett., 83, pp. 3308-3310, 2003). Recently, monolithic integration of RITD with CMOS has been realized, demonstrating a low-voltage operation of a monostable-bistable logic element (MOBILE) (S.Sudirgo et al., Proc. 2003 Int. Semic. Dev. Res. Symp., pp. 22, 2003). In this study, RITD layers were grown through openings in a 300 nm thick chemical vapor deposition (CVD) SiO/sub 2/ layer.\",\"PeriodicalId\":385948,\"journal\":{\"name\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2004.1367807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
隧道二极管与场效应晶体管(FET)的结合可以提高电子电路的速度和功率能力。通过展示低功耗无刷新隧道sram和高性能紧凑型a /D转换器,在III-V材料中实现了这一点。将隧道二极管与主流CMOS技术集成的新推力导致了Si/SiGe谐振带间隧道二极管(RITD)的发明(S.L. Rommel et al., apple)。理论物理。列托人。(K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001),最高峰谷电流比(PVCR)为6.0。该结构由夹在两个由低热分子束外延(LT-MBE)生长的δ掺杂平面之间的SiGe间隔层组成(N. Jin等,IEEE Trans.)。《编》,第50卷,第1876—1884页,2003年)。通过调整间隔层厚度,峰值电流密度(Jp)可以从0.1 A/cm/sup 2/调节到151 kA/cm/sup 2/ (N. Jin et al., App. Phys.)。列托人。, 83, pp. 3308-3310, 2003)。最近,RITD与CMOS的单片集成已经实现,展示了单稳-双稳逻辑元件(MOBILE)的低压操作(S.Sudirgo et al., Proc. 2003 Int.)。Semic。Dev. Res. Symp,第22页,2003)。在这项研究中,RITD层通过300 nm厚的化学气相沉积(CVD) SiO/sub 2/层的开孔生长。
Overgrown Si/SiGe resonant interband tunnel diodes for integration with CMOS
The incorporation of tunnel diodes with field effect transistors (FET) can improve the speed and power capability in electronic circuitry. This has been realized in III-V materials by demonstrating a low power refresh-free tunneling-SRAM and high performance compact A/D converter. A new thrust to integrate tunnel diodes with the mainstream CMOS technology led to the invention of Si/SiGe resonant interband tunnel diode (RITD) (S.L. Rommel et al., Appl. Phys. Lett., vol. 73, pp. 2191-93, 1998) with the highest reported peak-to-valley current ratio (PVCR) of 6.0 (K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001). The structure consists of a SiGe spacer i-layer sandwiched between two delta-doped planes grown by low-thermal molecular beam epitaxy (LT-MBE) (N. Jin et al., IEEE Trans. Elec. Dev., vol. 50, pp. 1876-1884, 2003). By adjusting the spacer layer thickness, the peak current density (Jp) can be adjusted from 0.1 A/cm/sup 2/ up to 151 kA/cm/sup 2/ (N. Jin et al., App. Phys. Lett., 83, pp. 3308-3310, 2003). Recently, monolithic integration of RITD with CMOS has been realized, demonstrating a low-voltage operation of a monostable-bistable logic element (MOBILE) (S.Sudirgo et al., Proc. 2003 Int. Semic. Dev. Res. Symp., pp. 22, 2003). In this study, RITD layers were grown through openings in a 300 nm thick chemical vapor deposition (CVD) SiO/sub 2/ layer.