{"title":"电力电子中pcb集成技术的新设计概念,将电路寄生降到最低","authors":"Rando Raßmann, Jasper Schnack, Knud Gripp, Ulf Schümann","doi":"10.1109/3D-PEIM55914.2023.10052616","DOIUrl":null,"url":null,"abstract":"With the introduction of fast switching wide-bandgap (WBG) power semiconductors, the focus in the development of power modules has increasingly been shifted to reducing parasitic elements. To fully use the advantages of WBG power semiconductors, the relevant parasitic elements within the power modules must be minimized. Due to the limited degrees of freedom in the design, the parasitic elements in conventional power module structures can’t be further reduced. Consequently, new structures for power module designs and new solutions for the assembly and connection technology must be developed. Multi-layer, three-dimensional (3-D) structures are suggested for fast switching power semiconductors. Due to the 3-D structure new degrees of freedom in the module design can be used. This allows to reduce parasitic elements with new design and connection concepts. This paper presents design guidelines for 3-D power modules based on printed circuit boards (PCBs). By using PCB manufacturing technologies, a multi-layer, 3-D power module is developed. The proposed module structure does not require any bond wires in the power loop. To verify the advantages of the presented design, the module is assembled, measured, and compared with a simplified 3-D power module.","PeriodicalId":106578,"journal":{"name":"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Design Concepts for PCB-Integration Technology in Power Electronics reducing Circuit Parasitics to a Minimum\",\"authors\":\"Rando Raßmann, Jasper Schnack, Knud Gripp, Ulf Schümann\",\"doi\":\"10.1109/3D-PEIM55914.2023.10052616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the introduction of fast switching wide-bandgap (WBG) power semiconductors, the focus in the development of power modules has increasingly been shifted to reducing parasitic elements. To fully use the advantages of WBG power semiconductors, the relevant parasitic elements within the power modules must be minimized. Due to the limited degrees of freedom in the design, the parasitic elements in conventional power module structures can’t be further reduced. Consequently, new structures for power module designs and new solutions for the assembly and connection technology must be developed. Multi-layer, three-dimensional (3-D) structures are suggested for fast switching power semiconductors. Due to the 3-D structure new degrees of freedom in the module design can be used. This allows to reduce parasitic elements with new design and connection concepts. This paper presents design guidelines for 3-D power modules based on printed circuit boards (PCBs). By using PCB manufacturing technologies, a multi-layer, 3-D power module is developed. The proposed module structure does not require any bond wires in the power loop. To verify the advantages of the presented design, the module is assembled, measured, and compared with a simplified 3-D power module.\",\"PeriodicalId\":106578,\"journal\":{\"name\":\"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3D-PEIM55914.2023.10052616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3D-PEIM55914.2023.10052616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Design Concepts for PCB-Integration Technology in Power Electronics reducing Circuit Parasitics to a Minimum
With the introduction of fast switching wide-bandgap (WBG) power semiconductors, the focus in the development of power modules has increasingly been shifted to reducing parasitic elements. To fully use the advantages of WBG power semiconductors, the relevant parasitic elements within the power modules must be minimized. Due to the limited degrees of freedom in the design, the parasitic elements in conventional power module structures can’t be further reduced. Consequently, new structures for power module designs and new solutions for the assembly and connection technology must be developed. Multi-layer, three-dimensional (3-D) structures are suggested for fast switching power semiconductors. Due to the 3-D structure new degrees of freedom in the module design can be used. This allows to reduce parasitic elements with new design and connection concepts. This paper presents design guidelines for 3-D power modules based on printed circuit boards (PCBs). By using PCB manufacturing technologies, a multi-layer, 3-D power module is developed. The proposed module structure does not require any bond wires in the power loop. To verify the advantages of the presented design, the module is assembled, measured, and compared with a simplified 3-D power module.