改进蛋白质紊乱预测的方法

S. Vucetic, P. Radivojac, Z. Obradovic, Celeste J. Brown, Dunker Ak
{"title":"改进蛋白质紊乱预测的方法","authors":"S. Vucetic, P. Radivojac, Z. Obradovic, Celeste J. Brown, Dunker Ak","doi":"10.1109/IJCNN.2001.938802","DOIUrl":null,"url":null,"abstract":"In this paper we propose several methods for improving prediction of protein disorder. These include attribute construction from protein sequence, choice of classifier and postprocessing. While ensembles of neural networks achieved the higher accuracy, the difference as compared to logistic regression classifiers was smaller than 1%. Bagging of neural networks, where moving averages over windows of length 61 were used for attribute construction, combined with postprocessing by averaging predictions over windows of length 81 resulted in 82.6% accuracy for a larger set of ordered and disordered proteins than used previously. This result was a significant improvement over previous methodology, which gave an accuracy of 70.2%. Moreover, unlike the previous methodology, the modified attribute construction allowed prediction at protein ends.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Methods for improving protein disorder prediction\",\"authors\":\"S. Vucetic, P. Radivojac, Z. Obradovic, Celeste J. Brown, Dunker Ak\",\"doi\":\"10.1109/IJCNN.2001.938802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose several methods for improving prediction of protein disorder. These include attribute construction from protein sequence, choice of classifier and postprocessing. While ensembles of neural networks achieved the higher accuracy, the difference as compared to logistic regression classifiers was smaller than 1%. Bagging of neural networks, where moving averages over windows of length 61 were used for attribute construction, combined with postprocessing by averaging predictions over windows of length 81 resulted in 82.6% accuracy for a larger set of ordered and disordered proteins than used previously. This result was a significant improvement over previous methodology, which gave an accuracy of 70.2%. Moreover, unlike the previous methodology, the modified attribute construction allowed prediction at protein ends.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了几种改进蛋白质紊乱预测的方法。这包括从蛋白质序列中构建属性、选择分类器和后处理。虽然神经网络的集成实现了更高的精度,但与逻辑回归分类器相比,差异小于1%。神经网络的装袋,在长度为61的窗口上的移动平均被用于属性构建,结合在长度为81的窗口上的平均预测的后处理,导致比以前使用的更大的有序和无序蛋白质集的准确性为82.6%。该结果比以前的方法有了显著的改进,其准确度为70.2%。此外,与以前的方法不同,改进的属性构建允许在蛋白质末端进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for improving protein disorder prediction
In this paper we propose several methods for improving prediction of protein disorder. These include attribute construction from protein sequence, choice of classifier and postprocessing. While ensembles of neural networks achieved the higher accuracy, the difference as compared to logistic regression classifiers was smaller than 1%. Bagging of neural networks, where moving averages over windows of length 61 were used for attribute construction, combined with postprocessing by averaging predictions over windows of length 81 resulted in 82.6% accuracy for a larger set of ordered and disordered proteins than used previously. This result was a significant improvement over previous methodology, which gave an accuracy of 70.2%. Moreover, unlike the previous methodology, the modified attribute construction allowed prediction at protein ends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1