移动前探索:具身导航的可行路径估计与记忆回忆框架

Yang Wu, Shirui Feng, Guanbin Li, Liang Lin
{"title":"移动前探索:具身导航的可行路径估计与记忆回忆框架","authors":"Yang Wu, Shirui Feng, Guanbin Li, Liang Lin","doi":"10.1145/3469877.3490570","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on solving the navigation problem of embodied question answering (EmbodiedQA), where the lack of experience and common sense information essentially result in a failure finding target when the robot is spawn in unknown environments. We present a route planning method named Path Estimation and Memory Recalling (PEMR) framework. PEMR includes a “looking ahead” process, i.e. a visual feature extractor module that estimates feasible paths for gathering 3D navigational information; another process “looking behind” process that is a memory recalling mechanism aims at fully leveraging past experience collected by the feature extractor. To encourage the navigator to learn more accurate prior expert experience, we improve the original benchmark dataset and provide a family of evaluation metrics for diagnosing both navigation and question answering modules. We show strong experimental results of PEMR on the EmbodiedQA navigation task.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explore before Moving: A Feasible Path Estimation and Memory Recalling Framework for Embodied Navigation\",\"authors\":\"Yang Wu, Shirui Feng, Guanbin Li, Liang Lin\",\"doi\":\"10.1145/3469877.3490570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on solving the navigation problem of embodied question answering (EmbodiedQA), where the lack of experience and common sense information essentially result in a failure finding target when the robot is spawn in unknown environments. We present a route planning method named Path Estimation and Memory Recalling (PEMR) framework. PEMR includes a “looking ahead” process, i.e. a visual feature extractor module that estimates feasible paths for gathering 3D navigational information; another process “looking behind” process that is a memory recalling mechanism aims at fully leveraging past experience collected by the feature extractor. To encourage the navigator to learn more accurate prior expert experience, we improve the original benchmark dataset and provide a family of evaluation metrics for diagnosing both navigation and question answering modules. We show strong experimental results of PEMR on the EmbodiedQA navigation task.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们专注于解决嵌入问答(EmbodiedQA)的导航问题,其中缺乏经验和常识信息本质上导致机器人在未知环境中产卵时无法找到目标。提出了一种路径估计和记忆召回(PEMR)框架的路由规划方法。PEMR包括一个“向前看”过程,即一个视觉特征提取模块,用于估计收集3D导航信息的可行路径;另一个“向后看”的过程是一种记忆回忆机制,旨在充分利用特征提取器收集的过去经验。为了鼓励导航器学习更准确的先前专家经验,我们改进了原始基准数据集,并提供了一系列用于诊断导航和问答模块的评估指标。我们在EmbodiedQA导航任务上展示了强有力的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explore before Moving: A Feasible Path Estimation and Memory Recalling Framework for Embodied Navigation
In this paper, we focus on solving the navigation problem of embodied question answering (EmbodiedQA), where the lack of experience and common sense information essentially result in a failure finding target when the robot is spawn in unknown environments. We present a route planning method named Path Estimation and Memory Recalling (PEMR) framework. PEMR includes a “looking ahead” process, i.e. a visual feature extractor module that estimates feasible paths for gathering 3D navigational information; another process “looking behind” process that is a memory recalling mechanism aims at fully leveraging past experience collected by the feature extractor. To encourage the navigator to learn more accurate prior expert experience, we improve the original benchmark dataset and provide a family of evaluation metrics for diagnosing both navigation and question answering modules. We show strong experimental results of PEMR on the EmbodiedQA navigation task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1