MOCEA:用于推断蛋白质-蛋白质功能相互作用的多目标聚类进化算法

J. Tapia, E. Vallejo, E. Morett
{"title":"MOCEA:用于推断蛋白质-蛋白质功能相互作用的多目标聚类进化算法","authors":"J. Tapia, E. Vallejo, E. Morett","doi":"10.1145/1569901.1570164","DOIUrl":null,"url":null,"abstract":"This paper explores the capabilities of multi-objective genetic algorithms to cluster genomic data. We used multiple objective functions not only to further expand the clustering abilities of the algorithm, but also to give more biological significance to the results. Particularly, we grouped a large set of proteins described by a set collection of genomic attributes to infer functional interactions among them. We conducted various computational experiments that demonstrated the proficiency of the proposed method when compared to algorithms that rely on a single biological parameter.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MOCEA: a multi-objective clustering evolutionary algorithm for inferring protein-protein functional interactions\",\"authors\":\"J. Tapia, E. Vallejo, E. Morett\",\"doi\":\"10.1145/1569901.1570164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the capabilities of multi-objective genetic algorithms to cluster genomic data. We used multiple objective functions not only to further expand the clustering abilities of the algorithm, but also to give more biological significance to the results. Particularly, we grouped a large set of proteins described by a set collection of genomic attributes to infer functional interactions among them. We conducted various computational experiments that demonstrated the proficiency of the proposed method when compared to algorithms that rely on a single biological parameter.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文探讨了多目标遗传算法聚类基因组数据的能力。我们使用多目标函数不仅进一步扩展了算法的聚类能力,而且使结果具有更多的生物学意义。特别是,我们将一组由基因组属性集合描述的大量蛋白质分组,以推断它们之间的功能相互作用。我们进行了各种计算实验,与依赖单一生物参数的算法相比,证明了所提出方法的熟练程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOCEA: a multi-objective clustering evolutionary algorithm for inferring protein-protein functional interactions
This paper explores the capabilities of multi-objective genetic algorithms to cluster genomic data. We used multiple objective functions not only to further expand the clustering abilities of the algorithm, but also to give more biological significance to the results. Particularly, we grouped a large set of proteins described by a set collection of genomic attributes to infer functional interactions among them. We conducted various computational experiments that demonstrated the proficiency of the proposed method when compared to algorithms that rely on a single biological parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1