{"title":"基于自编码器的演化数据流快速在线聚类算法","authors":"Dazheng Gao","doi":"10.1145/3590003.3590020","DOIUrl":null,"url":null,"abstract":"In the era of Big Data, more and more IoT devices are generating huge amounts of high-dimensional, real-time and dynamic data streams. As a result, there is a growing interest in how to cluster this data effectively and efficiently. Although a number of popular two-stage data stream clustering algorithms have been proposed, these algorithms still have some problems that are difficult to solve in the face of real-world data streams: poor handling of high-dimensional data streams and difficulty in effective dimensionality reduction; a slow clustering process that makes it difficult to meet real-time requirements; and too many manually defined parameters that make it difficult to cope with evolving data streams. This paper proposes an autoencoder-based fast online clustering algorithm for evolving data stream(AFOCEDS). The algorithm uses a stacked denoising autoencoder to reduce the dimensionality of the data, a multi-threaded approach to improve response speed, and a mechanism to automatically update parameters to cope with evolving data streams. The experiments on several realistic data streams show that AFOCEDS outperforms other algorithms in terms of effectiveness and speed.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An autoencoder-based fast online clustering algorithm for evolving data stream\",\"authors\":\"Dazheng Gao\",\"doi\":\"10.1145/3590003.3590020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of Big Data, more and more IoT devices are generating huge amounts of high-dimensional, real-time and dynamic data streams. As a result, there is a growing interest in how to cluster this data effectively and efficiently. Although a number of popular two-stage data stream clustering algorithms have been proposed, these algorithms still have some problems that are difficult to solve in the face of real-world data streams: poor handling of high-dimensional data streams and difficulty in effective dimensionality reduction; a slow clustering process that makes it difficult to meet real-time requirements; and too many manually defined parameters that make it difficult to cope with evolving data streams. This paper proposes an autoencoder-based fast online clustering algorithm for evolving data stream(AFOCEDS). The algorithm uses a stacked denoising autoencoder to reduce the dimensionality of the data, a multi-threaded approach to improve response speed, and a mechanism to automatically update parameters to cope with evolving data streams. The experiments on several realistic data streams show that AFOCEDS outperforms other algorithms in terms of effectiveness and speed.\",\"PeriodicalId\":340225,\"journal\":{\"name\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590003.3590020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An autoencoder-based fast online clustering algorithm for evolving data stream
In the era of Big Data, more and more IoT devices are generating huge amounts of high-dimensional, real-time and dynamic data streams. As a result, there is a growing interest in how to cluster this data effectively and efficiently. Although a number of popular two-stage data stream clustering algorithms have been proposed, these algorithms still have some problems that are difficult to solve in the face of real-world data streams: poor handling of high-dimensional data streams and difficulty in effective dimensionality reduction; a slow clustering process that makes it difficult to meet real-time requirements; and too many manually defined parameters that make it difficult to cope with evolving data streams. This paper proposes an autoencoder-based fast online clustering algorithm for evolving data stream(AFOCEDS). The algorithm uses a stacked denoising autoencoder to reduce the dimensionality of the data, a multi-threaded approach to improve response speed, and a mechanism to automatically update parameters to cope with evolving data streams. The experiments on several realistic data streams show that AFOCEDS outperforms other algorithms in terms of effectiveness and speed.