{"title":"结合区域和支持向量机主动学习的手势识别自动皮肤分割","authors":"Junwei Han, G. Awad, Alistair Sutherland, Hai Wu","doi":"10.1109/FGR.2006.27","DOIUrl":null,"url":null,"abstract":"Skin segmentation is the cornerstone of many applications such as gesture recognition, face detection, and objectionable image filtering. In this paper, we attempt to address the skin segmentation problem for gesture recognition. Initially, given a gesture video sequence, a generic skin model is applied to the first couple of frames to automatically collect the training data. Then, an SVM classifier based on active learning is used to identify the skin pixels. Finally, the results are improved by incorporating region segmentation. The proposed algorithm is fully automatic and adaptive to different signers. We have tested our approach on the ECHO database. Comparing with other existing algorithms, our method could achieve better performance","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Automatic Skin Segmentation for Gesture Recognition Combining Region and Support Vector Machine Active Learning\",\"authors\":\"Junwei Han, G. Awad, Alistair Sutherland, Hai Wu\",\"doi\":\"10.1109/FGR.2006.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin segmentation is the cornerstone of many applications such as gesture recognition, face detection, and objectionable image filtering. In this paper, we attempt to address the skin segmentation problem for gesture recognition. Initially, given a gesture video sequence, a generic skin model is applied to the first couple of frames to automatically collect the training data. Then, an SVM classifier based on active learning is used to identify the skin pixels. Finally, the results are improved by incorporating region segmentation. The proposed algorithm is fully automatic and adaptive to different signers. We have tested our approach on the ECHO database. Comparing with other existing algorithms, our method could achieve better performance\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Skin Segmentation for Gesture Recognition Combining Region and Support Vector Machine Active Learning
Skin segmentation is the cornerstone of many applications such as gesture recognition, face detection, and objectionable image filtering. In this paper, we attempt to address the skin segmentation problem for gesture recognition. Initially, given a gesture video sequence, a generic skin model is applied to the first couple of frames to automatically collect the training data. Then, an SVM classifier based on active learning is used to identify the skin pixels. Finally, the results are improved by incorporating region segmentation. The proposed algorithm is fully automatic and adaptive to different signers. We have tested our approach on the ECHO database. Comparing with other existing algorithms, our method could achieve better performance