基于灰度图像分形维数的爆炸图像特征分析

Yu-cai Dong, Jiang Tian-yuan, Z. Ling, Lin Min, Shi Hong-tao, Cai Ren-mou
{"title":"基于灰度图像分形维数的爆炸图像特征分析","authors":"Yu-cai Dong, Jiang Tian-yuan, Z. Ling, Lin Min, Shi Hong-tao, Cai Ren-mou","doi":"10.1109/CSAE.2011.5952929","DOIUrl":null,"url":null,"abstract":"In this paper, the explosive images are converted to gray level image and the interference factor in explosive is removed on the basis of fractal theories and digital graphic processing techniques. The method of box counting dimension is adopted by MATLAB to calculate the fractal dimension of the explosive images. The changes of fractal dimension at various moments are studied, and the change law is thus inferred, which lays the foundation for building explosive models.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The analysis of explosive image characteristics based on the fractal dimension of gray level image\",\"authors\":\"Yu-cai Dong, Jiang Tian-yuan, Z. Ling, Lin Min, Shi Hong-tao, Cai Ren-mou\",\"doi\":\"10.1109/CSAE.2011.5952929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the explosive images are converted to gray level image and the interference factor in explosive is removed on the basis of fractal theories and digital graphic processing techniques. The method of box counting dimension is adopted by MATLAB to calculate the fractal dimension of the explosive images. The changes of fractal dimension at various moments are studied, and the change law is thus inferred, which lays the foundation for building explosive models.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5952929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文基于分形理论和数字图形处理技术,将爆炸物图像转换为灰度图像,去除爆炸物中的干扰因素。利用MATLAB软件,采用盒数维数的方法计算爆炸图像的分形维数。研究了不同时刻分形维数的变化,从而推断出分形维数的变化规律,为建立爆炸模型奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The analysis of explosive image characteristics based on the fractal dimension of gray level image
In this paper, the explosive images are converted to gray level image and the interference factor in explosive is removed on the basis of fractal theories and digital graphic processing techniques. The method of box counting dimension is adopted by MATLAB to calculate the fractal dimension of the explosive images. The changes of fractal dimension at various moments are studied, and the change law is thus inferred, which lays the foundation for building explosive models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual group identification method of technical competitors using LinLog graph clustering algorithm Overview of 3D textile dynamic simulation research Monotonically decreasing eigenvalue for edge-sharpening diffusion Visual Tracking with adaptive layered-optimizing particles in Multifeature Particle Filtering Framework The fast Viterbi algorithm caching Profile Hidden Markov Models on graphic processing units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1