外差激光干涉仪中光学非线性谐波的形成与转换研究

Haijin Fu, Jiubin Tan, Z. Fan
{"title":"外差激光干涉仪中光学非线性谐波的形成与转换研究","authors":"Haijin Fu, Jiubin Tan, Z. Fan","doi":"10.1117/12.2181519","DOIUrl":null,"url":null,"abstract":"The accuracy of the heterodyne laser interferometer is strongly restricted by the optical nonlinearity harmonics. In order to mathematically reveal the formation and transformation mechanism of optical nonlinearity harmonics, the behavior of the nonlinearity harmonics is investigated with an optical nonlinearity expression based on the optical mixing parameters in the measurement signal. It is found that the formation and transformation of the first-order and second-order nonlinearity harmonics are closely related to the orthogonality of the optical mixing parameters. When the optical mixing parameters satisfy the orthogonal relation, the optical nonlinearity is purely the second-order harmonic whose peak-to-peak value is at least one order smaller than that of the first-order harmonic in the same optical mixing degree, indicating that a larger optical mixing level does not necessarily lead to a considerable optical nonlinearity error, which provides the theoretical guidance for building a heterodyne laser measurement system with low optical nonlinearity.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on formation and transformation of the optical nonlinearity harmonics in the heterodyne laser interferometer\",\"authors\":\"Haijin Fu, Jiubin Tan, Z. Fan\",\"doi\":\"10.1117/12.2181519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of the heterodyne laser interferometer is strongly restricted by the optical nonlinearity harmonics. In order to mathematically reveal the formation and transformation mechanism of optical nonlinearity harmonics, the behavior of the nonlinearity harmonics is investigated with an optical nonlinearity expression based on the optical mixing parameters in the measurement signal. It is found that the formation and transformation of the first-order and second-order nonlinearity harmonics are closely related to the orthogonality of the optical mixing parameters. When the optical mixing parameters satisfy the orthogonal relation, the optical nonlinearity is purely the second-order harmonic whose peak-to-peak value is at least one order smaller than that of the first-order harmonic in the same optical mixing degree, indicating that a larger optical mixing level does not necessarily lead to a considerable optical nonlinearity error, which provides the theoretical guidance for building a heterodyne laser measurement system with low optical nonlinearity.\",\"PeriodicalId\":380636,\"journal\":{\"name\":\"Precision Engineering Measurements and Instrumentation\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering Measurements and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2181519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2181519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

外差激光干涉仪的精度受到光学非线性谐波的强烈制约。为了从数学上揭示光学非线性谐波的形成和转化机理,采用基于测量信号中光混频参数的光学非线性表达式研究了非线性谐波的行为。研究发现,一阶和二阶非线性谐波的形成和变换与光学混合参数的正交性密切相关。当光混频参数满足正交关系时,光学非线性为纯二阶谐波,在相同的光混频度下,其峰峰值比一阶谐波值至少小一个阶,说明较大的光混频水平并不一定会导致较大的光学非线性误差,为构建低光学非线性的外差激光测量系统提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on formation and transformation of the optical nonlinearity harmonics in the heterodyne laser interferometer
The accuracy of the heterodyne laser interferometer is strongly restricted by the optical nonlinearity harmonics. In order to mathematically reveal the formation and transformation mechanism of optical nonlinearity harmonics, the behavior of the nonlinearity harmonics is investigated with an optical nonlinearity expression based on the optical mixing parameters in the measurement signal. It is found that the formation and transformation of the first-order and second-order nonlinearity harmonics are closely related to the orthogonality of the optical mixing parameters. When the optical mixing parameters satisfy the orthogonal relation, the optical nonlinearity is purely the second-order harmonic whose peak-to-peak value is at least one order smaller than that of the first-order harmonic in the same optical mixing degree, indicating that a larger optical mixing level does not necessarily lead to a considerable optical nonlinearity error, which provides the theoretical guidance for building a heterodyne laser measurement system with low optical nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method of gear defect intelligent detection based on transmission noise Simulation research on ATP system of airborne laser communication Multifocal axial confocal microscopic scanning with a phase-only liquid crystal spatial light modulator Small sample analysis of vision measurement error Double-grating diffraction interferometric stylus probing system for surface profiling and roughness measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1