并联升压变换器最小时间转换的实时实现

S. Patel, W. Weaver
{"title":"并联升压变换器最小时间转换的实时实现","authors":"S. Patel, W. Weaver","doi":"10.1109/PECI.2018.8334972","DOIUrl":null,"url":null,"abstract":"Demand for electrification is booming in both, traditional and upcoming generations of technological advancements. Power conversion systems are crucial aspect of electrification and often constructed by aggregating multiple power converter blocks for high power, performance and reliability of overall electrical system. An advanced control technique is developed is proposed with an aim to optimize system states of heterogeneous power converters within minimum transition time while maintaining feasible stress level on individual power converter. Practical implementation of real-time controller and performance improvement strategies are addressed. Hardware-in-the-loop emulation results validating the method, and the sensitivity analysis of system states as measure of robustness is presented.","PeriodicalId":151630,"journal":{"name":"2018 IEEE Power and Energy Conference at Illinois (PECI)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-time implementation of minimum time transition for paralleled boost converters\",\"authors\":\"S. Patel, W. Weaver\",\"doi\":\"10.1109/PECI.2018.8334972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand for electrification is booming in both, traditional and upcoming generations of technological advancements. Power conversion systems are crucial aspect of electrification and often constructed by aggregating multiple power converter blocks for high power, performance and reliability of overall electrical system. An advanced control technique is developed is proposed with an aim to optimize system states of heterogeneous power converters within minimum transition time while maintaining feasible stress level on individual power converter. Practical implementation of real-time controller and performance improvement strategies are addressed. Hardware-in-the-loop emulation results validating the method, and the sensitivity analysis of system states as measure of robustness is presented.\",\"PeriodicalId\":151630,\"journal\":{\"name\":\"2018 IEEE Power and Energy Conference at Illinois (PECI)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Power and Energy Conference at Illinois (PECI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECI.2018.8334972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2018.8334972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在传统和即将到来的几代技术进步中,对电气化的需求都在蓬勃发展。电力转换系统是电气化的重要组成部分,为了保证整个电力系统的高功率、高性能和高可靠性,电力转换系统通常由多个电力转换模块组合而成。提出了一种先进的控制技术,以在最小的过渡时间内优化异构变换器的系统状态,同时保持单个变换器的可行应力水平。讨论了实时控制器的实际实现和性能改进策略。硬件在环仿真结果验证了该方法的有效性,并给出了系统状态的灵敏度分析作为鲁棒性度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time implementation of minimum time transition for paralleled boost converters
Demand for electrification is booming in both, traditional and upcoming generations of technological advancements. Power conversion systems are crucial aspect of electrification and often constructed by aggregating multiple power converter blocks for high power, performance and reliability of overall electrical system. An advanced control technique is developed is proposed with an aim to optimize system states of heterogeneous power converters within minimum transition time while maintaining feasible stress level on individual power converter. Practical implementation of real-time controller and performance improvement strategies are addressed. Hardware-in-the-loop emulation results validating the method, and the sensitivity analysis of system states as measure of robustness is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved active-neutral-point-clamped (I-ANPC) multilevel converter: Fundamental circuit topology, innovative modulation technique, and experimental validation Analysis of multiple revenue streams for privately-owned energy storage systems PMU application for locating the source of forced oscillations in smart grids Decoupled active and reactive power predictive control of impedance source microinverter with LVRT capability Transmission line parameter-free fault location results using field data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1