基于混合LSTM的内容分发网络带宽预测方法

Xinyu Wang, Xin Du, Wenli Li, Zhihui Lu
{"title":"基于混合LSTM的内容分发网络带宽预测方法","authors":"Xinyu Wang, Xin Du, Wenli Li, Zhihui Lu","doi":"10.1109/SmartCloud55982.2022.00040","DOIUrl":null,"url":null,"abstract":"Content Delivery Network (CDN) can store workflow content by deploying edge service nodes and realizing network optimization with reasonable scheduling strategies. Manual selection of appropriate service clusters is coupled with low timeliness and a high economic burden. Therefore, the timing prediction of bandwidth remains a persistent demand to choose service clusters that can take on a safe workload. In this study, we proposes a model which can predict the load level in the future period to optimize the content delivery network. This model uses a machine learning method (K-means) for data optimization, which discarded 3114 of 185572 pieces of data that impact subsequent prediction models. Afterward, the model uses a 4-layers Long Short-Term Memory Network(LSTM) to predict the aggregated temporal data. The model named BK-LSTM considers the execution time and accuracy, eventually learning the real-time bandwidth demand pattern of 654 servers in the specific cluster. Experiments show that our BK-LSTM model has a mean absolute percentage error(MAPE) metric of about 15.2% on the test set, demonstrating this model’s ability to predict bandwidth workload well.","PeriodicalId":104366,"journal":{"name":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bandwidth Prediction Method Based on Hybrid LSTM for Content Delivery Network\",\"authors\":\"Xinyu Wang, Xin Du, Wenli Li, Zhihui Lu\",\"doi\":\"10.1109/SmartCloud55982.2022.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content Delivery Network (CDN) can store workflow content by deploying edge service nodes and realizing network optimization with reasonable scheduling strategies. Manual selection of appropriate service clusters is coupled with low timeliness and a high economic burden. Therefore, the timing prediction of bandwidth remains a persistent demand to choose service clusters that can take on a safe workload. In this study, we proposes a model which can predict the load level in the future period to optimize the content delivery network. This model uses a machine learning method (K-means) for data optimization, which discarded 3114 of 185572 pieces of data that impact subsequent prediction models. Afterward, the model uses a 4-layers Long Short-Term Memory Network(LSTM) to predict the aggregated temporal data. The model named BK-LSTM considers the execution time and accuracy, eventually learning the real-time bandwidth demand pattern of 654 servers in the specific cluster. Experiments show that our BK-LSTM model has a mean absolute percentage error(MAPE) metric of about 15.2% on the test set, demonstrating this model’s ability to predict bandwidth workload well.\",\"PeriodicalId\":104366,\"journal\":{\"name\":\"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartCloud55982.2022.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartCloud55982.2022.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内容分发网络(CDN)通过部署边缘服务节点,通过合理的调度策略实现网络优化,实现工作流内容的存储。人工选择适当的服务集群,时效性低,经济负担高。因此,带宽的定时预测仍然是选择能够承担安全工作负载的服务集群的持久需求。在本研究中,我们提出了一个可以预测未来一段时间内的负荷水平的模型来优化内容分发网络。该模型使用机器学习方法(K-means)进行数据优化,在185572条影响后续预测模型的数据中,丢弃了3114条。然后,该模型使用4层长短期记忆网络(LSTM)对聚合的时间数据进行预测。这个名为BK-LSTM的模型考虑了执行时间和准确性,最终了解到特定集群中654台服务器的实时带宽需求模式。实验表明,我们的BK-LSTM模型在测试集上的平均绝对百分比误差(MAPE)指标约为15.2%,表明该模型能够很好地预测带宽工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bandwidth Prediction Method Based on Hybrid LSTM for Content Delivery Network
Content Delivery Network (CDN) can store workflow content by deploying edge service nodes and realizing network optimization with reasonable scheduling strategies. Manual selection of appropriate service clusters is coupled with low timeliness and a high economic burden. Therefore, the timing prediction of bandwidth remains a persistent demand to choose service clusters that can take on a safe workload. In this study, we proposes a model which can predict the load level in the future period to optimize the content delivery network. This model uses a machine learning method (K-means) for data optimization, which discarded 3114 of 185572 pieces of data that impact subsequent prediction models. Afterward, the model uses a 4-layers Long Short-Term Memory Network(LSTM) to predict the aggregated temporal data. The model named BK-LSTM considers the execution time and accuracy, eventually learning the real-time bandwidth demand pattern of 654 servers in the specific cluster. Experiments show that our BK-LSTM model has a mean absolute percentage error(MAPE) metric of about 15.2% on the test set, demonstrating this model’s ability to predict bandwidth workload well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Impacts of JavaScript-Based Encryption of HTML5 Web Storage for Enhanced Privacy A Deep-Learning-Based Optimal Auction for Vehicular Edge Computing Resource Allocation TDH: An Efficient One-stop Enterprise-level Big Data Platform Survey of Research on Named Entity Recognition in Cyber Threat Intelligence A Semantic Segmentation Algorithm for Distributed Energy Data Storage Optimization based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1