基于大变化灵敏度的多区域互联电力系统分布式谐波谐振评估方法

S. M. Mazhari, A. Sahami, S. Kouhsari
{"title":"基于大变化灵敏度的多区域互联电力系统分布式谐波谐振评估方法","authors":"S. M. Mazhari, A. Sahami, S. Kouhsari","doi":"10.1109/PECI.2018.8334970","DOIUrl":null,"url":null,"abstract":"This paper presents a distributed simulation based method for harmonic resonance assessment (HRA) in multi-area large-scale power systems. Further consideration is devoted to the early harmonic frequency-scan formulation to shape them into a Bordered Blocked Diagonal Form (BBDF), which is suitable for parallel processing. The proposed algorithm (BBDF) allows operator of each area of an interconnected system to independently conduct the HRA. A large-change sensitivity based approach is then handled in a secure platform to apply the effects of whole network to each single area. The introduced decentralized HRA is capable to find the exact values as those of the interconnected system through TCP/IP communication media. The developed method is successfully implemented in an existing software package and applied to IEEE 14-bus harmonic test system, followed by a discussion on results.","PeriodicalId":151630,"journal":{"name":"2018 IEEE Power and Energy Conference at Illinois (PECI)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A large-change sensitivity based approach for distributed harmonic resonance assessment in multi-area interconnected power systems\",\"authors\":\"S. M. Mazhari, A. Sahami, S. Kouhsari\",\"doi\":\"10.1109/PECI.2018.8334970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a distributed simulation based method for harmonic resonance assessment (HRA) in multi-area large-scale power systems. Further consideration is devoted to the early harmonic frequency-scan formulation to shape them into a Bordered Blocked Diagonal Form (BBDF), which is suitable for parallel processing. The proposed algorithm (BBDF) allows operator of each area of an interconnected system to independently conduct the HRA. A large-change sensitivity based approach is then handled in a secure platform to apply the effects of whole network to each single area. The introduced decentralized HRA is capable to find the exact values as those of the interconnected system through TCP/IP communication media. The developed method is successfully implemented in an existing software package and applied to IEEE 14-bus harmonic test system, followed by a discussion on results.\",\"PeriodicalId\":151630,\"journal\":{\"name\":\"2018 IEEE Power and Energy Conference at Illinois (PECI)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Power and Energy Conference at Illinois (PECI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECI.2018.8334970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2018.8334970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于分布式仿真的多区域大型电力系统谐波共振评估方法。进一步考虑早期谐波频率扫描公式,将其形成适合并行处理的有边界阻塞对角形式(BBDF)。提出的算法(BBDF)允许互连系统的每个区域的运营商独立进行HRA。然后在一个安全的平台上处理基于大变化灵敏度的方法,将整个网络的影响应用到每个单独的区域。引入的去中心化HRA能够通过TCP/IP通信媒体找到与互联系统相同的精确值。在现有的软件包中成功地实现了该方法,并将其应用于IEEE 14总线谐波测试系统,并对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A large-change sensitivity based approach for distributed harmonic resonance assessment in multi-area interconnected power systems
This paper presents a distributed simulation based method for harmonic resonance assessment (HRA) in multi-area large-scale power systems. Further consideration is devoted to the early harmonic frequency-scan formulation to shape them into a Bordered Blocked Diagonal Form (BBDF), which is suitable for parallel processing. The proposed algorithm (BBDF) allows operator of each area of an interconnected system to independently conduct the HRA. A large-change sensitivity based approach is then handled in a secure platform to apply the effects of whole network to each single area. The introduced decentralized HRA is capable to find the exact values as those of the interconnected system through TCP/IP communication media. The developed method is successfully implemented in an existing software package and applied to IEEE 14-bus harmonic test system, followed by a discussion on results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved active-neutral-point-clamped (I-ANPC) multilevel converter: Fundamental circuit topology, innovative modulation technique, and experimental validation Analysis of multiple revenue streams for privately-owned energy storage systems PMU application for locating the source of forced oscillations in smart grids Decoupled active and reactive power predictive control of impedance source microinverter with LVRT capability Transmission line parameter-free fault location results using field data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1