基于VSC的高压直流系统有功无功完全独立控制策略

Chengyong Zhao, Chunyi Guo
{"title":"基于VSC的高压直流系统有功无功完全独立控制策略","authors":"Chengyong Zhao, Chunyi Guo","doi":"10.1109/PES.2009.5275743","DOIUrl":null,"url":null,"abstract":"The performance of VSC based HVDC system partially depends on its control strategy. Based on the steady state model of VSC-HVDC system, a power control strategy is proposed and a series of mathematical analysis expressions for power delivery are deduced using the coordinate conversion and variables substitution in terms of the original equations. The corresponding power controllers are designed using the PI controller and the nonlinear inverse system. Based on the strategy designed, the transmission limits of active power and reactive power are deduced. According to the circle characteristic of operation represented, it is proved theoretically that the control strategy can independently control the active and reactive power. Case studies are also carried out to testify the control strategy designed using the PSCAD/EMTDC software. Simulation results verify that the power control strategy designed can independently control active power and reactive power and the controllers have rapid responding speed, desirable stability, and highly steady state control accuracy.","PeriodicalId":258632,"journal":{"name":"2009 IEEE Power & Energy Society General Meeting","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Complete-independent control strategy of active and reactive power for VSC based HVDC system\",\"authors\":\"Chengyong Zhao, Chunyi Guo\",\"doi\":\"10.1109/PES.2009.5275743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of VSC based HVDC system partially depends on its control strategy. Based on the steady state model of VSC-HVDC system, a power control strategy is proposed and a series of mathematical analysis expressions for power delivery are deduced using the coordinate conversion and variables substitution in terms of the original equations. The corresponding power controllers are designed using the PI controller and the nonlinear inverse system. Based on the strategy designed, the transmission limits of active power and reactive power are deduced. According to the circle characteristic of operation represented, it is proved theoretically that the control strategy can independently control the active and reactive power. Case studies are also carried out to testify the control strategy designed using the PSCAD/EMTDC software. Simulation results verify that the power control strategy designed can independently control active power and reactive power and the controllers have rapid responding speed, desirable stability, and highly steady state control accuracy.\",\"PeriodicalId\":258632,\"journal\":{\"name\":\"2009 IEEE Power & Energy Society General Meeting\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2009.5275743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2009.5275743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

基于VSC的直流输电系统的性能在一定程度上取决于其控制策略。在直流直流系统稳态模型的基础上,提出了一种功率控制策略,并对原方程进行坐标转换和变量替换,推导出一系列功率输出的数学分析表达式。采用PI控制器和非线性逆系统设计相应的功率控制器。在此基础上,推导了有功功率和无功功率的传输极限。根据所表示的运行循环特性,从理论上证明了该控制策略能够独立控制有功和无功功率。通过实例验证了采用PSCAD/EMTDC软件设计的控制策略。仿真结果验证了所设计的功率控制策略能够独立控制有功功率和无功功率,控制器具有响应速度快、稳定性好、稳态控制精度高等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complete-independent control strategy of active and reactive power for VSC based HVDC system
The performance of VSC based HVDC system partially depends on its control strategy. Based on the steady state model of VSC-HVDC system, a power control strategy is proposed and a series of mathematical analysis expressions for power delivery are deduced using the coordinate conversion and variables substitution in terms of the original equations. The corresponding power controllers are designed using the PI controller and the nonlinear inverse system. Based on the strategy designed, the transmission limits of active power and reactive power are deduced. According to the circle characteristic of operation represented, it is proved theoretically that the control strategy can independently control the active and reactive power. Case studies are also carried out to testify the control strategy designed using the PSCAD/EMTDC software. Simulation results verify that the power control strategy designed can independently control active power and reactive power and the controllers have rapid responding speed, desirable stability, and highly steady state control accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substation fault analysis requirements On field experience results related to high-impedance faults in power distribution system Reactive power compensation using Z-source based photovoltaic system How can flicker level be determined before a customer is connected to the electric grid Transmission expansion and pricing in Colombia: An appraisal of current practices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1