寡头竞争网络环境下的最优影响策略

Dionisios N. Sotiropoulos, Ifigeneia Georgoula, Christos Bilanakos
{"title":"寡头竞争网络环境下的最优影响策略","authors":"Dionisios N. Sotiropoulos, Ifigeneia Georgoula, Christos Bilanakos","doi":"10.1145/3341161.3343691","DOIUrl":null,"url":null,"abstract":"This paper presents a non-linear optimization methodology for determining the Nash Equilibrium (NE) solutions of a non-cooperative two-player game. Each player, in particular, is trying to maximize a rational profit function within a continuous action space. The game arises in the context of a duopolistic network environment where two identical rival firms are competing to maximize their influence over a single consumer. Specifically, we consider a weighted and strongly connected network which mediates the opinion formation processes concerning the perceived qualities of their products. Obtaining the NE solutions for such a game is an extremely difficult task which cannot be analytically addressed, even if additional simplifying assumptions are imposed on the exogenous parameters of the model. Our approach, obtains the required NE solutions by combining the Karush-Kuhn-Tucker (KKT) conditions associated with the original optimization tasks into a single-objective nonlinear maximization problem under nonlinear constrains. The resulting optimization problem is, ultimately, solved through the utilization of the Sequential Quadratic Programming (SQP) algorithm which constitutes a state-of-the-art method for nonlinear optimization problems. The validity of our work is justified through the conduction of a series of experiments in which we simulated the best response-based dynamical behaviour of the two agents in the network that make strategic decisions. Juxtaposing the intersection points of the acquired best response curves against the NE solutions obtained by the proposed nonlinear optimization methodology verifies that the corresponding solution points coincide.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Influence Strategies in an Oligopolistic Competition Network Environment\",\"authors\":\"Dionisios N. Sotiropoulos, Ifigeneia Georgoula, Christos Bilanakos\",\"doi\":\"10.1145/3341161.3343691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a non-linear optimization methodology for determining the Nash Equilibrium (NE) solutions of a non-cooperative two-player game. Each player, in particular, is trying to maximize a rational profit function within a continuous action space. The game arises in the context of a duopolistic network environment where two identical rival firms are competing to maximize their influence over a single consumer. Specifically, we consider a weighted and strongly connected network which mediates the opinion formation processes concerning the perceived qualities of their products. Obtaining the NE solutions for such a game is an extremely difficult task which cannot be analytically addressed, even if additional simplifying assumptions are imposed on the exogenous parameters of the model. Our approach, obtains the required NE solutions by combining the Karush-Kuhn-Tucker (KKT) conditions associated with the original optimization tasks into a single-objective nonlinear maximization problem under nonlinear constrains. The resulting optimization problem is, ultimately, solved through the utilization of the Sequential Quadratic Programming (SQP) algorithm which constitutes a state-of-the-art method for nonlinear optimization problems. The validity of our work is justified through the conduction of a series of experiments in which we simulated the best response-based dynamical behaviour of the two agents in the network that make strategic decisions. Juxtaposing the intersection points of the acquired best response curves against the NE solutions obtained by the proposed nonlinear optimization methodology verifies that the corresponding solution points coincide.\",\"PeriodicalId\":403360,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341161.3343691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3343691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种确定非合作二人博弈纳什均衡(NE)解的非线性优化方法。特别是,每个玩家都试图在一个连续的行动空间中最大化一个合理的利润函数。这个游戏是在双寡头网络环境中产生的,两个相同的竞争对手公司为了最大限度地影响单个消费者而竞争。具体来说,我们考虑了一个加权和强连接的网络,它调解了关于他们的产品感知质量的意见形成过程。即使对模型的外生参数施加额外的简化假设,获得这种游戏的NE解决方案也是一项极其困难的任务,无法用分析方法解决。我们的方法通过将与原始优化任务相关的Karush-Kuhn-Tucker (KKT)条件组合成非线性约束下的单目标非线性最大化问题,获得所需的NE解。由此产生的优化问题最终通过使用序列二次规划(SQP)算法来解决,该算法构成了非线性优化问题的最新方法。我们工作的有效性是通过一系列的实验来证明的,在这些实验中,我们模拟了网络中做出战略决策的两个代理的基于最佳响应的动态行为。将所获得的最佳响应曲线的交点与所提出的非线性优化方法得到的NE解并置,验证了相应的解点重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Influence Strategies in an Oligopolistic Competition Network Environment
This paper presents a non-linear optimization methodology for determining the Nash Equilibrium (NE) solutions of a non-cooperative two-player game. Each player, in particular, is trying to maximize a rational profit function within a continuous action space. The game arises in the context of a duopolistic network environment where two identical rival firms are competing to maximize their influence over a single consumer. Specifically, we consider a weighted and strongly connected network which mediates the opinion formation processes concerning the perceived qualities of their products. Obtaining the NE solutions for such a game is an extremely difficult task which cannot be analytically addressed, even if additional simplifying assumptions are imposed on the exogenous parameters of the model. Our approach, obtains the required NE solutions by combining the Karush-Kuhn-Tucker (KKT) conditions associated with the original optimization tasks into a single-objective nonlinear maximization problem under nonlinear constrains. The resulting optimization problem is, ultimately, solved through the utilization of the Sequential Quadratic Programming (SQP) algorithm which constitutes a state-of-the-art method for nonlinear optimization problems. The validity of our work is justified through the conduction of a series of experiments in which we simulated the best response-based dynamical behaviour of the two agents in the network that make strategic decisions. Juxtaposing the intersection points of the acquired best response curves against the NE solutions obtained by the proposed nonlinear optimization methodology verifies that the corresponding solution points coincide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural-Brane: An inductive approach for attributed network embedding Customer Recommendation Based on Profile Matching and Customized Campaigns in On-Line Social Networks Characterizing and Detecting Livestreaming Chatbots Two Decades of Network Science: as seen through the co-authorship network of network scientists Show me your friends, and I will tell you whom you vote for: Predicting voting behavior in social networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1