基于EPC第1类第2代协议的改进q算法

Lin Peng, Yanhan Zeng, Hanyu Liu, Hongzhou Tan
{"title":"基于EPC第1类第2代协议的改进q算法","authors":"Lin Peng, Yanhan Zeng, Hanyu Liu, Hongzhou Tan","doi":"10.1145/3144789.3144798","DOIUrl":null,"url":null,"abstract":"In this paper, an improved Q-algorithm based on Dynamic Framed Slotted Aloha (DFSA) used in EPC Class 1 Generation 2 (C1G2) protocol is proposed. In the proposed anti-collision algorithm, the total number of frames and the unnecessary sending of QueryAdjust commands are reduced in the recognition process by calculating the optimal threshold for adjusting Q. Besides, the identification efficiency and speed are improved by utilizing the Binary Selection (BS) with Collision Processing Threshold (CPT) strategy and Prediction Bit (PB), respectively. Simulation results show that the improved Q-algorithm costs less time slots and the system throughput fluctuates around 47% which is at least 20% higher than EPC C1G2.","PeriodicalId":254163,"journal":{"name":"Proceedings of the 2nd International Conference on Intelligent Information Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved Q-algorithm based on EPC Class 1 Generation 2 protocol\",\"authors\":\"Lin Peng, Yanhan Zeng, Hanyu Liu, Hongzhou Tan\",\"doi\":\"10.1145/3144789.3144798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved Q-algorithm based on Dynamic Framed Slotted Aloha (DFSA) used in EPC Class 1 Generation 2 (C1G2) protocol is proposed. In the proposed anti-collision algorithm, the total number of frames and the unnecessary sending of QueryAdjust commands are reduced in the recognition process by calculating the optimal threshold for adjusting Q. Besides, the identification efficiency and speed are improved by utilizing the Binary Selection (BS) with Collision Processing Threshold (CPT) strategy and Prediction Bit (PB), respectively. Simulation results show that the improved Q-algorithm costs less time slots and the system throughput fluctuates around 47% which is at least 20% higher than EPC C1G2.\",\"PeriodicalId\":254163,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Intelligent Information Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Intelligent Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3144789.3144798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Intelligent Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3144789.3144798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于EPC第1类第2代(C1G2)协议的基于动态帧开槽Aloha (DFSA)的改进q算法。在该算法中,通过计算q值调整的最优阈值,减少了识别过程中的帧总数和QueryAdjust命令的不必要发送,并利用带有碰撞处理阈值(CPT)策略的二值选择(BS)和预测比特(PB)分别提高了识别效率和速度。仿真结果表明,改进后的q -算法占用的时隙更少,系统吞吐量在47%左右波动,比EPC C1G2提高至少20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved Q-algorithm based on EPC Class 1 Generation 2 protocol
In this paper, an improved Q-algorithm based on Dynamic Framed Slotted Aloha (DFSA) used in EPC Class 1 Generation 2 (C1G2) protocol is proposed. In the proposed anti-collision algorithm, the total number of frames and the unnecessary sending of QueryAdjust commands are reduced in the recognition process by calculating the optimal threshold for adjusting Q. Besides, the identification efficiency and speed are improved by utilizing the Binary Selection (BS) with Collision Processing Threshold (CPT) strategy and Prediction Bit (PB), respectively. Simulation results show that the improved Q-algorithm costs less time slots and the system throughput fluctuates around 47% which is at least 20% higher than EPC C1G2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-line Multi-step Prediction of Short Term Traffic Flow Based on GRU Neural Network An Image Denoising Fast Algorithm for Weighted Total Variation An AQI Level Forecasting Model Using Chi-square Test and BP Neural Network Research on Mural Inpainting Method based on MCA Image Decomposition Variation Characteristics Analysis of the Vegetation Coverage in Midu County Based on Landsat 8 Remote Sensing Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1