时间漂移感知射频优化与机器学习技术

R. Sharankova, M. Mwaniki, K. Seiya, M. Wesley
{"title":"时间漂移感知射频优化与机器学习技术","authors":"R. Sharankova, M. Mwaniki, K. Seiya, M. Wesley","doi":"10.2172/1983803","DOIUrl":null,"url":null,"abstract":"The Fermilab Linac delivers 400 MeV H- beam to the rest of the accelerator chain. Providing stable intensity, energy, and emittance is key since it directly affects downstream machines. To operate high current beam, accelerators must minimize uncontrolled particle loss; this can be accomplished by minimizing beam longitudinal emittance via RF parameter optimization. However, RF tuning is required daily since the resonance frequency of the accelerating cavities is affected by ambient temperature and humidity variations and thus drifts with time. In addition, the energy and phase space distribution of particles emerging from the ion source are subject to fluctuations. Such drift is not unique to Fermilab, but rather affects most laboratories. We are exploring machine learning (ML) algorithms for automated RF tuning for 2 objectives: optimization of Linac output energy and phase oscillation correction, with an emphasis on time-drift aware modeling that can account for conditions changing over time.","PeriodicalId":116964,"journal":{"name":"Time-Drift Aware RF Optimization with Machine Learning Techniques","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Drift Aware RF Optimization with Machine Learning Techniques\",\"authors\":\"R. Sharankova, M. Mwaniki, K. Seiya, M. Wesley\",\"doi\":\"10.2172/1983803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fermilab Linac delivers 400 MeV H- beam to the rest of the accelerator chain. Providing stable intensity, energy, and emittance is key since it directly affects downstream machines. To operate high current beam, accelerators must minimize uncontrolled particle loss; this can be accomplished by minimizing beam longitudinal emittance via RF parameter optimization. However, RF tuning is required daily since the resonance frequency of the accelerating cavities is affected by ambient temperature and humidity variations and thus drifts with time. In addition, the energy and phase space distribution of particles emerging from the ion source are subject to fluctuations. Such drift is not unique to Fermilab, but rather affects most laboratories. We are exploring machine learning (ML) algorithms for automated RF tuning for 2 objectives: optimization of Linac output energy and phase oscillation correction, with an emphasis on time-drift aware modeling that can account for conditions changing over time.\",\"PeriodicalId\":116964,\"journal\":{\"name\":\"Time-Drift Aware RF Optimization with Machine Learning Techniques\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time-Drift Aware RF Optimization with Machine Learning Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/1983803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time-Drift Aware RF Optimization with Machine Learning Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1983803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

费米实验室直线加速器向加速器链的其余部分提供400 MeV的H-束流。提供稳定的强度、能量和发射度是关键,因为它直接影响下游机器。为了操作大电流束流,加速器必须将不受控制的粒子损失最小化;这可以通过射频参数优化最小化波束纵向发射度来实现。然而,由于加速腔的谐振频率受到环境温度和湿度变化的影响,因此需要每天进行射频调谐,从而随时间漂移。此外,离子源产生的粒子的能量和相空间分布受到波动的影响。这种漂移并不是费米实验室独有的,而是影响大多数实验室的。我们正在探索用于自动RF调谐的机器学习(ML)算法,以实现两个目标:优化直线加速器输出能量和相位振荡校正,重点是时间漂移感知建模,可以考虑随时间变化的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-Drift Aware RF Optimization with Machine Learning Techniques
The Fermilab Linac delivers 400 MeV H- beam to the rest of the accelerator chain. Providing stable intensity, energy, and emittance is key since it directly affects downstream machines. To operate high current beam, accelerators must minimize uncontrolled particle loss; this can be accomplished by minimizing beam longitudinal emittance via RF parameter optimization. However, RF tuning is required daily since the resonance frequency of the accelerating cavities is affected by ambient temperature and humidity variations and thus drifts with time. In addition, the energy and phase space distribution of particles emerging from the ion source are subject to fluctuations. Such drift is not unique to Fermilab, but rather affects most laboratories. We are exploring machine learning (ML) algorithms for automated RF tuning for 2 objectives: optimization of Linac output energy and phase oscillation correction, with an emphasis on time-drift aware modeling that can account for conditions changing over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-Drift Aware RF Optimization with Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1