训练神经网络:反向传播与遗传算法

M. Siddique, M. Tokhi
{"title":"训练神经网络:反向传播与遗传算法","authors":"M. Siddique, M. Tokhi","doi":"10.1109/IJCNN.2001.938792","DOIUrl":null,"url":null,"abstract":"There are a number of problems associated with training neural networks with backpropagation algorithm. The algorithm scales exponentially with increased complexity of the problem. It is very often trapped in local minima, and is not robust to changes of network parameters such as number of hidden layer neurons and learning rate. The use of genetic algorithms is a recent trend, which is good at exploring a large and complex search space, to overcome such problems. In this paper a genetic algorithm is proposed for training feedforward neural networks and its performances is investigated. The results are analyzed and compared with those obtained by the backpropagation algorithm.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Training neural networks: backpropagation vs. genetic algorithms\",\"authors\":\"M. Siddique, M. Tokhi\",\"doi\":\"10.1109/IJCNN.2001.938792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a number of problems associated with training neural networks with backpropagation algorithm. The algorithm scales exponentially with increased complexity of the problem. It is very often trapped in local minima, and is not robust to changes of network parameters such as number of hidden layer neurons and learning rate. The use of genetic algorithms is a recent trend, which is good at exploring a large and complex search space, to overcome such problems. In this paper a genetic algorithm is proposed for training feedforward neural networks and its performances is investigated. The results are analyzed and compared with those obtained by the backpropagation algorithm.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

用反向传播算法训练神经网络存在许多问题。该算法随着问题复杂性的增加呈指数级扩展。它经常陷入局部极小值,并且对隐层神经元数量和学习率等网络参数的变化缺乏鲁棒性。利用遗传算法是近年来的一种趋势,它善于探索大而复杂的搜索空间,以克服这类问题。本文提出了一种用于训练前馈神经网络的遗传算法,并对其性能进行了研究。并与反向传播算法的结果进行了分析和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training neural networks: backpropagation vs. genetic algorithms
There are a number of problems associated with training neural networks with backpropagation algorithm. The algorithm scales exponentially with increased complexity of the problem. It is very often trapped in local minima, and is not robust to changes of network parameters such as number of hidden layer neurons and learning rate. The use of genetic algorithms is a recent trend, which is good at exploring a large and complex search space, to overcome such problems. In this paper a genetic algorithm is proposed for training feedforward neural networks and its performances is investigated. The results are analyzed and compared with those obtained by the backpropagation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1