SiGe量子点快闪存储器中隧道氧化物厚度对激活能的依赖性

Yueran Liu, S. Tang, Decai Yu, G. Hwang, S. Banerjee
{"title":"SiGe量子点快闪存储器中隧道氧化物厚度对激活能的依赖性","authors":"Yueran Liu, S. Tang, Decai Yu, G. Hwang, S. Banerjee","doi":"10.1109/DRC.2005.1553046","DOIUrl":null,"url":null,"abstract":"For nonvolatile memory devices, a long retention time is very important. Nanocrystal floating gate has been demonstrated to lead to an improvement for retention time compare to conventional continuous floating gate. In this paper, the authors present our studies of activation energy for SiGe nanocrystal flash memory devices as a function of tunnel oxide thickness to try to clarify this issue","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunnel oxide thickness dependence of activation energy for SiGe quantum dot flash memory\",\"authors\":\"Yueran Liu, S. Tang, Decai Yu, G. Hwang, S. Banerjee\",\"doi\":\"10.1109/DRC.2005.1553046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For nonvolatile memory devices, a long retention time is very important. Nanocrystal floating gate has been demonstrated to lead to an improvement for retention time compare to conventional continuous floating gate. In this paper, the authors present our studies of activation energy for SiGe nanocrystal flash memory devices as a function of tunnel oxide thickness to try to clarify this issue\",\"PeriodicalId\":306160,\"journal\":{\"name\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2005.1553046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"63rd Device Research Conference Digest, 2005. DRC '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2005.1553046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于非易失性存储设备来说,长时间的保持是非常重要的。与传统的连续式浮栅相比,纳米晶浮栅已被证明可以改善停留时间。在本文中,作者提出了我们的研究SiGe纳米晶闪存器件的活化能作为隧道氧化物厚度的函数,试图澄清这一问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunnel oxide thickness dependence of activation energy for SiGe quantum dot flash memory
For nonvolatile memory devices, a long retention time is very important. Nanocrystal floating gate has been demonstrated to lead to an improvement for retention time compare to conventional continuous floating gate. In this paper, the authors present our studies of activation energy for SiGe nanocrystal flash memory devices as a function of tunnel oxide thickness to try to clarify this issue
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-power stable field-plated AlGaN-GaN MOSHFETs A new four-terminal hybrid silicon/organic field-effect sensor device Tunnel junctions in GaN/AlN for optoelectronic applications Data retention behavior in the embedded SONOS nonvolatile memory cell Mobility and sub-threshold characteristics in high-mobility dual-channel strained Si/strainef SiGe p-MOSFETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1