Josue B. Benavides-Aucapiña, Rafael A. Lituma-Guartan, Danilo F. Poveda-Pulla, L. F. Guerrero-Vásquez, Paul A. Chasi-Pesántez
{"title":"基于斐波那契序列的多共振频率自互补天线在超宽带中的应用","authors":"Josue B. Benavides-Aucapiña, Rafael A. Lituma-Guartan, Danilo F. Poveda-Pulla, L. F. Guerrero-Vásquez, Paul A. Chasi-Pesántez","doi":"10.1109/LATINCOM.2018.8613214","DOIUrl":null,"url":null,"abstract":"In this paper we present the design and simulation of a self-complementary (SCA)Ultra-Wideband (UWB)antenna. The basic structure of this antenna uses the Fibonacci sequence in the construction of a golden spiral in the first iteration and six hexagonal monopoles are strategically placed in the midpoints of the spiral to maintain the sequence. In addition, the microstrip feed line is partial expanded to implement a notch filter for acquiring ultra-wideband features. The self-complementary sequence engraved in the ground plane allows the smooth current distribution in the radiating patch and the multiple resonant frequencies. In the other hand, the composition and the structure of the proposed antenna guarantees the coexistence of the UWB and WLAN (5.15-5.825 GHz)technologies. The optimized dimensions for this antenna are 30 mm⨯23.3775 mm, with a bandwidth of 2.63 to 11.2 GHz with multiple resonant frequencies at 2.7-3.41-4.14-4.94-6.82-7.98-8.42-9-9.91-10.45 GHz with a VSWR <2 over the entire frequency range except for the rejected frequencies. The compact antenna has a quasi-omnidirectional radiation pattern with suitable input impedance and return loss less than −10dB over the UWB range, these features offer several applications within the telecommunications area.","PeriodicalId":332646,"journal":{"name":"2018 IEEE 10th Latin-American Conference on Communications (LATINCOM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-Complementary Antenna with Multi-Resonance Frequency Based on Fibonacci Sequence for UWB Applications\",\"authors\":\"Josue B. Benavides-Aucapiña, Rafael A. Lituma-Guartan, Danilo F. Poveda-Pulla, L. F. Guerrero-Vásquez, Paul A. Chasi-Pesántez\",\"doi\":\"10.1109/LATINCOM.2018.8613214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the design and simulation of a self-complementary (SCA)Ultra-Wideband (UWB)antenna. The basic structure of this antenna uses the Fibonacci sequence in the construction of a golden spiral in the first iteration and six hexagonal monopoles are strategically placed in the midpoints of the spiral to maintain the sequence. In addition, the microstrip feed line is partial expanded to implement a notch filter for acquiring ultra-wideband features. The self-complementary sequence engraved in the ground plane allows the smooth current distribution in the radiating patch and the multiple resonant frequencies. In the other hand, the composition and the structure of the proposed antenna guarantees the coexistence of the UWB and WLAN (5.15-5.825 GHz)technologies. The optimized dimensions for this antenna are 30 mm⨯23.3775 mm, with a bandwidth of 2.63 to 11.2 GHz with multiple resonant frequencies at 2.7-3.41-4.14-4.94-6.82-7.98-8.42-9-9.91-10.45 GHz with a VSWR <2 over the entire frequency range except for the rejected frequencies. The compact antenna has a quasi-omnidirectional radiation pattern with suitable input impedance and return loss less than −10dB over the UWB range, these features offer several applications within the telecommunications area.\",\"PeriodicalId\":332646,\"journal\":{\"name\":\"2018 IEEE 10th Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 10th Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM.2018.8613214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM.2018.8613214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Complementary Antenna with Multi-Resonance Frequency Based on Fibonacci Sequence for UWB Applications
In this paper we present the design and simulation of a self-complementary (SCA)Ultra-Wideband (UWB)antenna. The basic structure of this antenna uses the Fibonacci sequence in the construction of a golden spiral in the first iteration and six hexagonal monopoles are strategically placed in the midpoints of the spiral to maintain the sequence. In addition, the microstrip feed line is partial expanded to implement a notch filter for acquiring ultra-wideband features. The self-complementary sequence engraved in the ground plane allows the smooth current distribution in the radiating patch and the multiple resonant frequencies. In the other hand, the composition and the structure of the proposed antenna guarantees the coexistence of the UWB and WLAN (5.15-5.825 GHz)technologies. The optimized dimensions for this antenna are 30 mm⨯23.3775 mm, with a bandwidth of 2.63 to 11.2 GHz with multiple resonant frequencies at 2.7-3.41-4.14-4.94-6.82-7.98-8.42-9-9.91-10.45 GHz with a VSWR <2 over the entire frequency range except for the rejected frequencies. The compact antenna has a quasi-omnidirectional radiation pattern with suitable input impedance and return loss less than −10dB over the UWB range, these features offer several applications within the telecommunications area.