基于新型低光照支持数据集的端到端驾驶员分心识别

M. H. Saad, M. Khalil, Hazem M. Abbas
{"title":"基于新型低光照支持数据集的端到端驾驶员分心识别","authors":"M. H. Saad, M. Khalil, Hazem M. Abbas","doi":"10.1109/ICCES51560.2020.9334619","DOIUrl":null,"url":null,"abstract":"In this paper, seven End-To-End deep learning models, including three sequence models, were trained for driver distractions recognition. One of these models (Convolutional GRU) achieved 95.48% test-accuracy. The performance of each model was analyzed using different techniques like confusion matrix, t-SNE representation, and saliency map. In addition, the largest driver distractions dataset, to date, was presented. This dataset contains ten classes and comes with temporal information. Using the NoIR technology the dataset was captured, that makes the dataset to be able to contain samples at different lighting conditions in case of using IR LEDs. The dataset contains 70 drivers either males or females.","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"End-To-End Driver Distraction Recognition Using Novel Low Lighting Support Dataset\",\"authors\":\"M. H. Saad, M. Khalil, Hazem M. Abbas\",\"doi\":\"10.1109/ICCES51560.2020.9334619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, seven End-To-End deep learning models, including three sequence models, were trained for driver distractions recognition. One of these models (Convolutional GRU) achieved 95.48% test-accuracy. The performance of each model was analyzed using different techniques like confusion matrix, t-SNE representation, and saliency map. In addition, the largest driver distractions dataset, to date, was presented. This dataset contains ten classes and comes with temporal information. Using the NoIR technology the dataset was captured, that makes the dataset to be able to contain samples at different lighting conditions in case of using IR LEDs. The dataset contains 70 drivers either males or females.\",\"PeriodicalId\":247183,\"journal\":{\"name\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES51560.2020.9334619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用7个端到端深度学习模型(包括3个序列模型)进行驾驶员分心识别训练。其中一个模型(卷积GRU)的测试准确率达到95.48%。使用不同的技术(如混淆矩阵、t-SNE表示和显著性图)分析每个模型的性能。此外,还展示了迄今为止最大的驾驶员分心数据集。该数据集包含十个类,并附带时间信息。使用NoIR技术捕获数据集,这使得数据集能够在使用IR led的情况下包含不同照明条件下的样本。该数据集包含70名男性或女性司机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
End-To-End Driver Distraction Recognition Using Novel Low Lighting Support Dataset
In this paper, seven End-To-End deep learning models, including three sequence models, were trained for driver distractions recognition. One of these models (Convolutional GRU) achieved 95.48% test-accuracy. The performance of each model was analyzed using different techniques like confusion matrix, t-SNE representation, and saliency map. In addition, the largest driver distractions dataset, to date, was presented. This dataset contains ten classes and comes with temporal information. Using the NoIR technology the dataset was captured, that makes the dataset to be able to contain samples at different lighting conditions in case of using IR LEDs. The dataset contains 70 drivers either males or females.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Proposed System for the Identification of Modem Arabic Poetry Meters (IMAP) Evaluating the Modsecurity Web Application Firewall Against SQL Injection Attacks Low-Power Low-Complexity FM-UWB Transmitter in 130nm CMOS for WBAN Applications Blade Angle Control Using TLBO Based Modified Adaptive Controller Clustering Research Papers Using Genetic Algorithm Optimized Self-Organizing Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1