基于周期时间超分辨率的低帧率视频步态识别

Naoki Akae, Yasushi Makihara, Y. Yagi
{"title":"基于周期时间超分辨率的低帧率视频步态识别","authors":"Naoki Akae, Yasushi Makihara, Y. Yagi","doi":"10.1109/IJCB.2011.6117530","DOIUrl":null,"url":null,"abstract":"This paper describes a method of gait recognition where both a gallery and a probe are based on low frame-rate videos. The sparsity of phases (stances) per gait period makes it much harder to match the gait using existing gait recognition algorithms. Consequently, we introduce a super resolution technique to generate a high frame-rate periodic image sequence as a preprocess to matching. First, the initial phase for each frame is estimated based on an exemplar of a high frame-rate gait image sequence. Images between a pair of adjacent frames sorted by the estimated phases are then filled using a morphing technique to avoid ghosting effects. Next, a manifold of the periodic gait image sequence is reconstructed based on the estimated phase and morphed images. Finally, the phase estimation and manifold reconstruction are iterated to generate better high frame-rate images in the energy minimization framework. Experiments with real data on 100 subjects demonstrate the effectiveness of the proposed method particularly for low frame-rate videos of less than 5 fps.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Gait recognition using periodic temporal super resolution for low frame-rate videos\",\"authors\":\"Naoki Akae, Yasushi Makihara, Y. Yagi\",\"doi\":\"10.1109/IJCB.2011.6117530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method of gait recognition where both a gallery and a probe are based on low frame-rate videos. The sparsity of phases (stances) per gait period makes it much harder to match the gait using existing gait recognition algorithms. Consequently, we introduce a super resolution technique to generate a high frame-rate periodic image sequence as a preprocess to matching. First, the initial phase for each frame is estimated based on an exemplar of a high frame-rate gait image sequence. Images between a pair of adjacent frames sorted by the estimated phases are then filled using a morphing technique to avoid ghosting effects. Next, a manifold of the periodic gait image sequence is reconstructed based on the estimated phase and morphed images. Finally, the phase estimation and manifold reconstruction are iterated to generate better high frame-rate images in the energy minimization framework. Experiments with real data on 100 subjects demonstrate the effectiveness of the proposed method particularly for low frame-rate videos of less than 5 fps.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文描述了一种基于低帧率视频的步态识别方法。每个步态周期的相位(姿态)的稀疏性使得现有的步态识别算法很难匹配步态。因此,我们引入了一种超分辨率技术来生成高帧率的周期性图像序列作为匹配的预处理。首先,基于高帧率步态图像序列的样例估计每帧的初始相位;然后使用变形技术填充由估计相位排序的一对相邻帧之间的图像,以避免重影效应。然后,基于估计的相位和变形图像重构周期步态图像序列的流形。最后,迭代相位估计和流形重构,在能量最小化框架下生成更好的高帧率图像。100个对象的真实数据实验证明了该方法的有效性,特别是对于小于5帧/秒的低帧率视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gait recognition using periodic temporal super resolution for low frame-rate videos
This paper describes a method of gait recognition where both a gallery and a probe are based on low frame-rate videos. The sparsity of phases (stances) per gait period makes it much harder to match the gait using existing gait recognition algorithms. Consequently, we introduce a super resolution technique to generate a high frame-rate periodic image sequence as a preprocess to matching. First, the initial phase for each frame is estimated based on an exemplar of a high frame-rate gait image sequence. Images between a pair of adjacent frames sorted by the estimated phases are then filled using a morphing technique to avoid ghosting effects. Next, a manifold of the periodic gait image sequence is reconstructed based on the estimated phase and morphed images. Finally, the phase estimation and manifold reconstruction are iterated to generate better high frame-rate images in the energy minimization framework. Experiments with real data on 100 subjects demonstrate the effectiveness of the proposed method particularly for low frame-rate videos of less than 5 fps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1