低k芯片上铜柱连接芯片-封装相互作用可靠性的综合研究

F. Che, Jong-Kai Lin, K. Y. Au, Xiaowu Zhang
{"title":"低k芯片上铜柱连接芯片-封装相互作用可靠性的综合研究","authors":"F. Che, Jong-Kai Lin, K. Y. Au, Xiaowu Zhang","doi":"10.1109/EPTC.2014.7028363","DOIUrl":null,"url":null,"abstract":"Cu pillar technology can cater for high I/O, fine pitch and further miniaturization requirements compared to wire bonding and conventional flip chip technologies. However, chip-package interaction (CPI) for low-k chip is a critical challenge for Cu pillar technology under assembly process and temperature loading due to stiffer Cu pillar structure compared to conventional C4 bump. Thermo-compression bonding (TCB) process was developed and used for fine pitch Cu pillar assembly on Cu/low-k chip to reduce the package warpage and low-k stress. In this study, a novel TCB process modeling methodology using a 2D axisymmetry model with global-local technique was established by considering process condition step by step. The simulation results show that TCB process results in much lower package warpage and low-k stress compared to reflow process. Based on the developed TCB modeling method, the comprehensive parametric studies were conducted to optimize TCB process condition and Cu pillar design for CPI reliability improvement, including Cu pillar structure design, package geometry, and packaging materials selection. The final package and assembly solution was successfully achieved based on suggestions and recommendations provided by numerical simulation results.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comprehensive study on reliability of chip-package interaction using Cu pillar joint onto low k chip\",\"authors\":\"F. Che, Jong-Kai Lin, K. Y. Au, Xiaowu Zhang\",\"doi\":\"10.1109/EPTC.2014.7028363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu pillar technology can cater for high I/O, fine pitch and further miniaturization requirements compared to wire bonding and conventional flip chip technologies. However, chip-package interaction (CPI) for low-k chip is a critical challenge for Cu pillar technology under assembly process and temperature loading due to stiffer Cu pillar structure compared to conventional C4 bump. Thermo-compression bonding (TCB) process was developed and used for fine pitch Cu pillar assembly on Cu/low-k chip to reduce the package warpage and low-k stress. In this study, a novel TCB process modeling methodology using a 2D axisymmetry model with global-local technique was established by considering process condition step by step. The simulation results show that TCB process results in much lower package warpage and low-k stress compared to reflow process. Based on the developed TCB modeling method, the comprehensive parametric studies were conducted to optimize TCB process condition and Cu pillar design for CPI reliability improvement, including Cu pillar structure design, package geometry, and packaging materials selection. The final package and assembly solution was successfully achieved based on suggestions and recommendations provided by numerical simulation results.\",\"PeriodicalId\":115713,\"journal\":{\"name\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2014.7028363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

与线键合和传统倒装芯片技术相比,铜柱技术可以满足高I/O、细间距和进一步小型化的要求。然而,与传统的C4碰撞相比,低钾芯片的芯片封装相互作用(CPI)是铜柱技术在装配过程和温度载荷下面临的一个关键挑战。开发了热压缩键合(TCB)工艺,并将其应用于Cu/低k芯片上的细间距铜柱组装,以减少封装翘曲和低k应力。本文通过逐步考虑工艺条件,建立了一种基于全局-局部技术的二维轴对称模型的TCB工艺建模方法。仿真结果表明,与回流工艺相比,TCB工艺具有更小的封装翘曲和低k应力。基于所建立的TCB建模方法,对优化TCB工艺条件和Cu柱设计进行了全面的参数化研究,包括Cu柱结构设计、封装几何设计、封装材料选择等,以提高CPI可靠性。根据数值模拟结果提出的建议和建议,成功地获得了最终的封装和装配方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive study on reliability of chip-package interaction using Cu pillar joint onto low k chip
Cu pillar technology can cater for high I/O, fine pitch and further miniaturization requirements compared to wire bonding and conventional flip chip technologies. However, chip-package interaction (CPI) for low-k chip is a critical challenge for Cu pillar technology under assembly process and temperature loading due to stiffer Cu pillar structure compared to conventional C4 bump. Thermo-compression bonding (TCB) process was developed and used for fine pitch Cu pillar assembly on Cu/low-k chip to reduce the package warpage and low-k stress. In this study, a novel TCB process modeling methodology using a 2D axisymmetry model with global-local technique was established by considering process condition step by step. The simulation results show that TCB process results in much lower package warpage and low-k stress compared to reflow process. Based on the developed TCB modeling method, the comprehensive parametric studies were conducted to optimize TCB process condition and Cu pillar design for CPI reliability improvement, including Cu pillar structure design, package geometry, and packaging materials selection. The final package and assembly solution was successfully achieved based on suggestions and recommendations provided by numerical simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the height of Carbon Nanotubes on hot switching of Au/Cr-Au/MWCNT contact pairs Laminating thin glass onto glass carrier to eliminate grinding and bonding process for glass interposer A robust chip capacitor for video band width in RF power amplifiers Chip scale package with low cost substrate evaluation and characterization Methodology for more accurate assessment of heat loss in microchannel flow boiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1