基于FT-transformer的深度学习预测心力衰竭预后

Geun-Hyeong Kim, Minuk Yang, Geun-Hyeong Kim, Seong-Hwan Eom, Tae-Soo Lee, Seung Park
{"title":"基于FT-transformer的深度学习预测心力衰竭预后","authors":"Geun-Hyeong Kim, Minuk Yang, Geun-Hyeong Kim, Seong-Hwan Eom, Tae-Soo Lee, Seung Park","doi":"10.1109/ICUFN57995.2023.10200998","DOIUrl":null,"url":null,"abstract":"Although heart failure (HF) diagnosis and treatment techniques have advanced, more than 50% of HF patients are readmitted. Readmission worsens the life quality of patients due to economic and psychological burdens. Therefore, readmission prediction for patients is important to prevent unnecessary readmissions. We used a feature tokenizer transformer (FT-transformer) to predict readmission by embedding all features and analyzing via transformer encoder. Our experiment with 615 HF patients outperformed conventional machine learning models, achieving an area under the curve of 0.7434 within 28 days, 0.7063 within 3 months, and 0.7039 within 6 months. FT-transformer can potentially improve patient outcomes by enabling early interventions to prevent readmissions.","PeriodicalId":341881,"journal":{"name":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting heart failure prognosis using deep learning based on FT-transformer\",\"authors\":\"Geun-Hyeong Kim, Minuk Yang, Geun-Hyeong Kim, Seong-Hwan Eom, Tae-Soo Lee, Seung Park\",\"doi\":\"10.1109/ICUFN57995.2023.10200998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although heart failure (HF) diagnosis and treatment techniques have advanced, more than 50% of HF patients are readmitted. Readmission worsens the life quality of patients due to economic and psychological burdens. Therefore, readmission prediction for patients is important to prevent unnecessary readmissions. We used a feature tokenizer transformer (FT-transformer) to predict readmission by embedding all features and analyzing via transformer encoder. Our experiment with 615 HF patients outperformed conventional machine learning models, achieving an area under the curve of 0.7434 within 28 days, 0.7063 within 3 months, and 0.7039 within 6 months. FT-transformer can potentially improve patient outcomes by enabling early interventions to prevent readmissions.\",\"PeriodicalId\":341881,\"journal\":{\"name\":\"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN57995.2023.10200998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN57995.2023.10200998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管心衰的诊断和治疗技术已经取得了进步,但仍有超过50%的心衰患者再次入院。由于经济和心理负担,再入院使患者的生活质量恶化。因此,对患者进行再入院预测对于防止不必要的再入院具有重要意义。我们使用特征标记器变压器(ft -变压器)通过嵌入所有特征并通过变压器编码器进行分析来预测再入。我们对615例HF患者的实验优于传统的机器学习模型,28天曲线下面积为0.7434,3个月曲线下面积为0.7063,6个月曲线下面积为0.7039。FT-transformer可以通过早期干预预防再入院,从而潜在地改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting heart failure prognosis using deep learning based on FT-transformer
Although heart failure (HF) diagnosis and treatment techniques have advanced, more than 50% of HF patients are readmitted. Readmission worsens the life quality of patients due to economic and psychological burdens. Therefore, readmission prediction for patients is important to prevent unnecessary readmissions. We used a feature tokenizer transformer (FT-transformer) to predict readmission by embedding all features and analyzing via transformer encoder. Our experiment with 615 HF patients outperformed conventional machine learning models, achieving an area under the curve of 0.7434 within 28 days, 0.7063 within 3 months, and 0.7039 within 6 months. FT-transformer can potentially improve patient outcomes by enabling early interventions to prevent readmissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Search of Distance Functions That Improve Autoencoder Performance for Intrusion Detection DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence Bimodal Speech Emotion Recognition using Fused Intra and Cross Modality Features A Study on Latency Prediction in 5G network Broadcasting in chains of rings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1