使用机器学习来预测FPGA设计放置期间的工作频率

M. Fathi, T. Martin, G. Grewal, S. Areibi
{"title":"使用机器学习来预测FPGA设计放置期间的工作频率","authors":"M. Fathi, T. Martin, G. Grewal, S. Areibi","doi":"10.1109/ICM52667.2021.9664954","DOIUrl":null,"url":null,"abstract":"Circuit placement is an NP-hard problem and is considered to be one of the most challenging steps in the FPGA design flow. The goal of this paper is to explore how machine-learning regression models can be used during placement to predict the maximum frequency of operation. Each model uses static features from the circuit netlist, and dynamic features from the current placement, as input. Results obtained using standard benchmarks indicate that ensemble based machine learning models are capable of accurately predicting the maximum frequency of operation with an average error of 1.72%.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Predict Operating Frequency During Placement in FPGA Designs\",\"authors\":\"M. Fathi, T. Martin, G. Grewal, S. Areibi\",\"doi\":\"10.1109/ICM52667.2021.9664954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circuit placement is an NP-hard problem and is considered to be one of the most challenging steps in the FPGA design flow. The goal of this paper is to explore how machine-learning regression models can be used during placement to predict the maximum frequency of operation. Each model uses static features from the circuit netlist, and dynamic features from the current placement, as input. Results obtained using standard benchmarks indicate that ensemble based machine learning models are capable of accurately predicting the maximum frequency of operation with an average error of 1.72%.\",\"PeriodicalId\":212613,\"journal\":{\"name\":\"2021 International Conference on Microelectronics (ICM)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM52667.2021.9664954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电路布局是一个np难题,被认为是FPGA设计流程中最具挑战性的步骤之一。本文的目标是探索如何在放置期间使用机器学习回归模型来预测操作的最大频率。每个模型都使用来自电路网表的静态特征和来自当前位置的动态特征作为输入。使用标准基准测试获得的结果表明,基于集成的机器学习模型能够准确预测最大操作频率,平均误差为1.72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Machine Learning to Predict Operating Frequency During Placement in FPGA Designs
Circuit placement is an NP-hard problem and is considered to be one of the most challenging steps in the FPGA design flow. The goal of this paper is to explore how machine-learning regression models can be used during placement to predict the maximum frequency of operation. Each model uses static features from the circuit netlist, and dynamic features from the current placement, as input. Results obtained using standard benchmarks indicate that ensemble based machine learning models are capable of accurately predicting the maximum frequency of operation with an average error of 1.72%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Implementation of Yolov4-tiny for Object Detection Comparative Study of Different Activation Functions for Anomalous Sound Detection Speed Up Functional Coverage Closure of CORDIC Designs Using Machine Learning Models Lightweight Image Encryption: Cellular Automata and the Lorenz System Double Gate TFET with Germanium Pocket and Metal drain using Dual Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1