Saud Alhajaj Aldossari, Abdullah Aldosary, Kwang-Cheng Chen
{"title":"通过人工智能技术克服5G及以后的无线信道建模和中继信号选择","authors":"Saud Alhajaj Aldossari, Abdullah Aldosary, Kwang-Cheng Chen","doi":"10.1109/ICUFN57995.2023.10200723","DOIUrl":null,"url":null,"abstract":"Wireless technology has faced technical challenges that have been unresolved or only partially addressed. Issues such as modeling the wireless channel and selecting the optimum signal This paper proposes using Artificial Intelligence (AI) to tackle these concerns. Machine Learning (ML) can estimate wireless channel states based on available data. Regression and classification techniques have been used to improve communication and meet 5G standards. The effectiveness of ML and Deep Learning techniques were compared to achieve the best accuracy. This paper shows how AI can revolutionize the design of 5G-NR and future generations with an accurate prediction of 99.99%.","PeriodicalId":341881,"journal":{"name":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overcoming Wireless Channel modeling and Relay Signal Selection Via Artificial Intelligence Techniques in the 5G and Beyond\",\"authors\":\"Saud Alhajaj Aldossari, Abdullah Aldosary, Kwang-Cheng Chen\",\"doi\":\"10.1109/ICUFN57995.2023.10200723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless technology has faced technical challenges that have been unresolved or only partially addressed. Issues such as modeling the wireless channel and selecting the optimum signal This paper proposes using Artificial Intelligence (AI) to tackle these concerns. Machine Learning (ML) can estimate wireless channel states based on available data. Regression and classification techniques have been used to improve communication and meet 5G standards. The effectiveness of ML and Deep Learning techniques were compared to achieve the best accuracy. This paper shows how AI can revolutionize the design of 5G-NR and future generations with an accurate prediction of 99.99%.\",\"PeriodicalId\":341881,\"journal\":{\"name\":\"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN57995.2023.10200723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN57995.2023.10200723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overcoming Wireless Channel modeling and Relay Signal Selection Via Artificial Intelligence Techniques in the 5G and Beyond
Wireless technology has faced technical challenges that have been unresolved or only partially addressed. Issues such as modeling the wireless channel and selecting the optimum signal This paper proposes using Artificial Intelligence (AI) to tackle these concerns. Machine Learning (ML) can estimate wireless channel states based on available data. Regression and classification techniques have been used to improve communication and meet 5G standards. The effectiveness of ML and Deep Learning techniques were compared to achieve the best accuracy. This paper shows how AI can revolutionize the design of 5G-NR and future generations with an accurate prediction of 99.99%.